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E. MARSCHALL 

R. S. HICKMAN 
Department of Mechanical Engineering, 

University of Cal i fornia, 
Santa Barbara , Cali f . 

Laminar Gravity-Flow Film Condensation of 
Binary Vapor Mixtures of Immiscible Liquids 
The condensation of a binary vapor mixture of immiscible liquids has been studied. 
The general formulation of this condensation problem includes the application of the 
conservation laws to both liquid and vapor phase, along with the boundary and inter
face conditions. The results indicate that only for small condensation rates, that is, 
for small temperature differences across the liquid film, do transport processes in the 
vapor boundary layer play an important role. For large condensation rates, heat and 
mass transfer can be calculated without the solution of the boundary equations of the 
vapor flow as long as the condensate film is laminar. 

Introduction 

LAMINAR film condensation of a single vapor or 
vapor mixtures both in the presence and absence of non condensable 
gases has been the subject of detailed analytical and empirical 
investigations. A predictive theory for condensation of a binary 
vapor mixture has been formulated by Sparrow and Marschall 
[1] -1 This theory is based on the assumption that the condensed 
vapors are completely miscible, thus permitting one to formulate 
descriptions of the condensate flow with the help of classical 
Nusselt theory [2]. The condensation of vapors of immiscible 
liquids has been the subject of limited experimental study. A 
recent literature review on this special condensation problem 
conducted by Bernhardt and Westwater [3] shows tha t experi
mental data are always fitted into empirical or semiempirical 
equations. All of these equations, including the one proposed 
by Bernhardt and Westwater, contain only properties of the 
condensate flow. Effects of transport processes in the vapor 
boundary layer on condensation heat and mass transfer are 
generally neglected. 

The theoretical t reatment of the condensation of vapors of 
immiscible liquids has not been formulated. The present paper 
is concerned with the formulation of a laminar theory to allow 
conservative prediction for at least this flow regime. 

The analytical formulation of the problem requires the ap
plication of the conservation laws to both the liquid film and the 
vapor phase. The present study deals with film condensation 
on a cooled vertical isothermal plate. The condensate consists 
of two immiscible liquids flowing downward along the plate 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
of The AMERICAN SOCIETY or MECHANICAL ENGINEERS. Manu
script received by the Heat Transfer Division August 8, 1971. Paper 
No. 72-WA/HT-8. 

organic liquid 

water 

Fig. 1 Condensate film of immiscible liquids 

under the action of gravity. All motion in the vapor phase is 
induced by the motion of the condensate or by free convection 
due to concentration differences; effects of forced convection are 
neglected. 

As Tobias and Stoppel [4] have discussed, the two-phase con
densation is quite irregular. In the case of a mixture of water 
and an organic liquid it has been observed that the organic liquid 
adheres to the cooled wall while the water condenses as drops 
on the film of organic liquid. The water drops often flow to
gether, thereby covering large areas of the organic-liquid film, 
Fig. 1. A similar observation has been made by Akers and 
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T» 
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W 2 c 

organic liquid 

— water 

Fig. 2 Model for the description of the flow characteristics of the con
densate film 

Turner [5]. At low or moderate heat fluxes water will condense 
as drops or lenses on the wetting or organic films. At high heat 
fluxes water will condense in distinct channels or as a more or 
less continuous film on the wetting organic phase. Prom a con
sideration of spreading coefficients and static equilibrium, Alters 
and Turner conclude that in no case could water be in contact 
with the cooled wall. New experiments carried out by Bern
hardt and Westwater [3] lead to a different result. I t was 
found that the organic liquid forms a film on the heat-transfer 
surface. Water forms small mobi e drops which move with the 
organic film. I t forms also large standing drops which are in 
contact with the metal surface. The last observation clearly 
contradicts the results obtained by Tobias and Stoppel and by 
Akers and Turner. 

The present experimental evidence does not allow an exact 
mathematical description of this particular condensation phe
nomenon. Therefore, to make the problem tractable, appropri
ate assumptions must be made. There are two basic analytical 
models which can be applied to the two-phase film flow. In the 
first model the components are treated as a pseudofluid with 
average properties. The description of the flow pattern is thus 
reduced to the Nusselt theory with modified transport properties. 
In the second flow model the phases are assumed to flow side by 
side [6]. Separate equations are written for each phase and 
coupled by equations for the behavior at the interface. 

Since the evaluation of average properties, especially of vis
cosity and thermal conductivity, is again based oh a number of 
assumptions and simplifications, the second model has been 
used. The model of the condensate has been treated as two 
film flows composed of the two materials. This simplification 
together with the omission of the wavy character of the liquid 

film leads to a straightforward solution of the problem under 
study. 

A schematic diagram of the condensation problem is presented 
in Pig. 2. The cooled vertical plate is at the uniform temperature 
Tw. The temperature at the liquid-vapor interface is the eutec-
tic temperature Ti which controls the interfacial concentrations 
of the component vapors and the pressure P of the system; how
ever, Ti is independent of the interfacial concentrations Wt of 
the component liquids. Par away from the surface the vapors 
have the prescribed concentrations Wa and a prescribed tempera
ture Ta. The total film thickness 5 at each vertical position x 
is the sum of thickness 5i and thickness 52 measured in the hori
zontal y direction. 

Mathematical Formulation and Solution 
The formulation involves the description of the liquid film and 

the vapor phase which are connected through the conditions at 
the liquid-vapor interface. 

Condensate Film. The film by film flow is treated using the 
Nusselt model. Denoting the liquids with 1 and 2 as shown in 
Fig. 2, the momentum equations are 

Mi V T = ~Pig" Ms (1) 

with the boundary conditions at 

y = 0 Mi = 0 

y = 5i Mi = M2 

dui dui 

dy dy 
(2) 

y = 8 
duz 

dy 
= 0 

The solution of equations (1) and (2) gives 

(Jafh 

2MI 

and 

Bafh 

2M2 (M 

[~- + 5,J 2y - if (3) 

<V + 25i5 

+ 2(5, + 8*)y - y* (4) 

where p = pi/pi, p- = Mi/j"a, and S2 = 8 — Si. From equations 
(3) and (4) the mass flow rates m,i and mi are found by simple 
integration to be 

Qafil *S3 

3/ti 

3 

,2p$ 
(5) 

and 

•Nomenclature-
c = constant 

D = binary diffusion coefficient 
/ = dimensionless stream func

tion 
g = mass-fraction variable 

ga = gravitational acceleration 
h = heat-transfer coefficients 

fci, fe = thermal conductivities (liq
uid) 

Ks = constant 
m = mass flow ratio (liquid) 

irii, mi = local mass flow rates in liquid 
film 

TO, rhi, rht = local condensation rates 
Mi, Mi = molecular weights 

q = heat flux 
Sc = Schmidt number 
Ti = eutectic temperature 
Tw = wall temperature 

Ui, ut, u = velocities in x direction 

vi,Vi = volume fraction 
Wi, Wi = mass fractions in vapor 

x, y = coordinates 
S, Si, 82 = liquid-film thickness 

17 = similarity variable 
A], X2, X = latent heats 

(Ui, jj.i, ju„ = viscosities 

p> = viscosity ratio (liquid) 
v = kinematic viscosity (vapor) 

Pi, Pi, Pv = densities 
p = density ratio (liquid) 
$ = film thickness ratio 
^p = stream function 

Subscripts 

i ~ interface (liquid-vapor) 
v = vapor 

w = wall 
1, 2 = component fluids 

•= = bulk 
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g a p A 3 r 3 p ^ 3 ^ 

3/Uj L.2 M M 
(6) 

smal l t e m p e r a t u r e v a r i a t i o n across t h e b o u n d a r y layer , t h e se t 

of b o u n d a r y - l a y e r e q u a t i o n s is 

where $ = 5 i /5 2 . D e n o t i n g t h e r a t i o mi/mi = m, e q u a t i o n s 

(5) a n d (6) y ie ld 

i 3 1 , , , 3m mu. 
$3 _|_ $2 ( ! _ „ , ) _ $ - = 0 

2 p p* p2 
(7) 

E q u a t i o n (7) c o m b i n e s t h e film t h i c k n e s s r a t i o $ w i t h t h e r a t i o s 

of t h e m a s s flow r a t e m, t h e dens i t i e s p, a n d t h e v iscos i t ies p.. 

Assuming d2T/dy2 = 0, t h e local h e a t - t r a n s f e r r a t e q is 

du dv 

da; dy 

du du I 

dx dy " \ 

bWi dWi 

dx by 

= 0 

p»»\ bhi — — 1 + v —— 
p„ / dj/^ 

d W i 

dy2 

(16) 

(17) 

(18) 

fafe 
(Ti - Tw) 

kidi + kiSi 

For t h e loca l m a s s - t r a n s f e r r a t e i t follows t h a t 

q &ife 1 

(8) 

T h e e q u a t i o n s m a y b e r e d u c e d b y t h e following we l l -known 

s imi l a r i t y t r a n s f o r m a t i o n : 

Similarity Variable 

V = c(y - 8)/xl" 

i(*i-J- + *.j 
(Ti - Tw) ga{Mx - MMWu - Wla) 

4cvHMi - WUMr - Mi)] 

dnii dmi 

dx dx 

where 

Ai + 
1 

1 + 
1 + m 

is t h e l a t e n t h e a t of t h e c o n d e n s a t e . S ince 

nti dmi/dx 

irii dmi/dx 

equat ion (9) can b e w r i t t e n as 

dim ( 1 \ 

dx \ m ) 

Prom e q u a t i o n s (5), (9) , a n d (12) i t follows 

k{x) 
4/ii hiU 1\ - Tw 

g *• K - ) (£ -) (- a 
Since t h e film t h i c k n e s s 8 is 

8 = 5, + 52 

it is r ead i ly de r ived t h a t 

and 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Dependent Variables 

f(ri) = <?(>?) 
W, - TFi,, 

(19) 

(20) 
4 c : r > " x ' " T<FW - Wla 

w h e r e \p is t h e s t r e a m func t ion . T h e t r a n s f o r m a t i o n yie lds 

/ ' " + 3 / / " - 2(f)2 + g = 0 (21) 

!7" + 3 S c / < ? ' = 0 (22) 

T h e ve loc i ty c o m p o n e n t s u a n d w follow d i r ec t ly b y d i f ferent ia t ion 

of t h e s t r e a m func t ion . 

= 4 J / C 2 X ' / 2 / ' 

vc 

V7* 
cy 

r. <l •] 

(23) 

(24) 

N e x t t h e m a s s flux a t t h e c o n d e n s a t e - v a p o r in te r face d u e t o 

convec t i on a n d diffusion is o b t a i n e d for b o t h c o m p o n e n t s : 

3/<o)Sc 
Wu 

Wu - Wlcc 

p„D(Wu - Wla,)cx~1/' 

(25) 

a n d 

[-' -g'm + 3/(o)Sc 
1 - Wu 

Wu Wu 
prD(Wu - ' W i J r a - ' / 4 

(26) 

T h e t o t a l m a s s flux cross ing t h e in te r face is o b t a i n e d b y s u m 

m i n g rhi a n d m • 

m = 3p„cx ' ' ' /(o: (27) 

An inspec t ion of t h e foregoing e q u a t i o n s shows t h a t for g iven 

surface t e m p e r a t u r e Ti a n d wal l t e m p e r a t u r e T„ t h e ve loc i ty 

"2t a t t h e film surface , film t h i c k n e s s 8, h e a t flux q, a n d con

densation r a t e m could be d e t e r m i n e d p r o v i d e d t h a t t h e film 

thickness r a t i o $ were k n o w n . T h e r a t i o $ , however , is n o t 

known a p r io r i b u t is one r e su l t of t h e ca l cu l a t i ons w h i c h in 

general h a v e also t o be based on t h e b e h a v i o r of t h e v a p o r p h a s e . 

Therefore cons ide ra t ion is n o w to b e g iven t o t h e processes in t h e 

vapor p h a s e . 

Vapor Phase 
T h e v a p o r b o u n d a r y l a y e r is fully desc r ibed b y t h e e q u a t i o n s 

'or m o m e n t u m , energy , a n d m a s s conse rva t ion . A s s u m i n g a 

T h e r a t i o of t h e m a s s fluxes mx a n d riiz a t t h e in te r face m u s t b e 

e q u a l t o t h e r a t i o m of t h e c o m p o n e n t s in t h e c o n d e n s a t e film, 

a n d the re fo re 

m2 

-ff'co) + 3/(o)Sc 
\Wu 

Wu 

Wu 

(28) 

T h e r a t i o m is n o t k n o w n b u t is also one resu l t of t h e ca lcula

t i o n s . 

Boundary Conditions for the Vapor Phase. T o solve t h e s y s t e m of 

different ial e q u a t i o n s cons i s t ing of e q u a t i o n s (21) a n d (22), 

five b o u n d a r y c o n d i t i o n s m u s t b e k n o w n . F r o m e q u a t i o n s (27) 

a n d (9) i t follows 

/(0) 
hiki (Ti TJ) 1 

( fc i /$ + h)\ (3p,,cx~l/1) 5, 
(29) 
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Fig. 3 Representative mass-fraction profiles for beniene 

1.00 

Fig. 4 Representative mass-fraction profiles for benzene 

Equations (23) and (4) yield 

, _ gaPj. 1 

2/J.I Ave2 (7-) + i ( 7 - ) 
+ (> + i ) ' 

Equation (20) gives 

and 
9m = 1 

ff<») = 0 

(30) 

(31) 

(32) 

Finally, the condition tha t u = 0 in the bulk of vapor deter
mines along with equation (23) 

I'M = 0 (33) 

Solutions 
In order to demonstrate the use of the developed theory, the 

foregoing equations and concepts will now be applied to the 
condensation of mixtures of water and benzene vapor. All 
thermodynamic and transport properties of benzene and water 
required for the calculation were taken from [7] or determined 
according to [8] and were fitted with algebraic equations for use 
in a computer program. 

As a first step in the calculations, the wall temperature Tw and 
the total pressure P were specified. The surface temperature 
Ti of the condensate film was then determined by the pressure-
temperature relations of saturated water vapor and benzene 
vapor. Next a trial-and-error method was used to find the mass 
ratio m. A value for m was selected and with this <3? was found 
from equation (7). Then the boundary conditions for the vapor 
phase, equations (29) to (33), were evaluated and finally equa
tions (21) and (22) were solved. Equation (28) was then used 

0.14 

0.12 

0.10 

to. 0 8 

$ 0 . 0 6 

0.04 

0.02 

TW(°K) 

-329.15 

-299.15 

\ 

VAPOR 

X 
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D 0.2 0.4 0.6 0.8 1.0 

Fig. 5 Representative velocity profiles 
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.0.7 

^ 
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T>343.i5°K 

.10 20 

(Ti-

4 0 50 °C 

Fig. 6 Heat-transfer results 

to check the guessed value of the mass ratio rn. If the equality 
was fulfilled the selected value for m was validated. 

Results 
Calculations have been carried out for a variety of different 

temperatures, pressures, and mass fractions. 
Mass-fraction profiles of benzene for values of Ti — Tw rang

ing from 2 to 44 deg C for an interface temperature Ti = 343.15 
deg K and for benzene mass fractions in the bulk of Wi„ = 0.2 
and 0.6 are shown in Figs. 3 and 4. An inspection of the figures 
reveals that for an increasing temperature difference across the 
liquid film, the vapor boundary-layer thickness decreases. This 
can be explained with the increasing condensation rates and 
therefore stronger suction of the condensate film, coupled with 
increasing temperature drops across the condensate film. A 
second and more important observation is that in this par
ticular case only for temperature differences Ti — Tw < 15 deg 
C are the component mass fraction in the liquid film and the 
bulk of the vapor different. For higher temperature differences 
the strong suction of the condensate film controls the transport 
process in the vapor boundary layer, free convection becomes 
negligibly small, Fig. 5, and a detailed analysis of the vapor 
boundary layer can be bypassed for the heat-transfer calculation, 
as is shown below. 
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In Fig. 5 velocity profiles are plotted for fixed values of Ti = 
343.15 deg K and Wi„ = 0.6. The curves are for wall tempera
tures of 299.15, 329.15, and 339.15 deg K. The strong maxi
mum in the curve for Ti — Tw = 4 deg C indicates the presence 
of free convection in the vapor boundary layer, while a t the large 
temperature difference of Ti — Tw = 44 deg C the curve is 
monotonic decreasing, suggesting tha t free convection is neg
ligibly small. 

Results of heat-transfer calculations are reported in the form 
q/qo, where q is the local heat flux across the liquid film (as deter
mined by this analysis) to given values of Tw, Ti, and W, and 
»o is the reference heat flux calculated under the assumption 
that the component mass fractions are the same in the liquid 
film and the bulk of vapor. As is shown in Fig. 6, the ratio 
of q/q» is essentially equal to one for values of Ti — Tw > 15. 
Heat-transfer calculations in this range are reduced to an analy
sis of the liquid film. For smaller temperature differences the 
ratio differs from one, indicating that the heat-transfer calcula
tion has to include the analysis of both liquid film and vapor 
boundary layer. 

In order to confront the calculation method with experimental 
data, the recently reported empirical correlation [3] 

h = vihi + vihi (34) 

has been used for comparison. For pure benzene and for pure 
water, heat-transfer results obtained with the help of the pre
sented method and with equation (34) are identical. Very small 
deviations in the heat-transfer results were found up to a water 
content of about 20 percent in the condensate. For higher 
water contents, the presented method predicts up to 35 percent 
lower heat-transfer coefficients than equation (34). Therefore 
the calculation procedure will allow the prediction of conservative 
heat-transfer coefficients. 

The above-mentioned simplified method of calculating heat 

transfer, bypassing the analysis of the vapor boundary layer, is, 
however, of limited value. In many applications of technical 
interest large condensation rates will lead to turbulent film flow 
with a quite different heat-transfer characteristic than the 
laminar film flow assumed in this paper. For these cases it is 
advisable to use correlations of experimental data such as are 
reported in [3]. 

I t should be emphasized that the simplified computation pro
cedure for q is applicable only a t large condensation rates, tha t 
is, at large differences of Ti and Tw, and at laminar film flow. 
Therefore a complete heat-transfer analysis of the condensation 
of a binary vapor mixture of immiscible liquids must employ 
the complete solution procedure to find the smallest value of Ti — 
Tm for which the simplified procedure is valid, as well as to check 
the Reynolds number of the condensate film in order to make 
sure tha t the film flow is laminar. 
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The Effect of Noncondensable Gas on 
Laminar Film Condensation of Liquid Metals1 

The effect of noncondensable gas on laminar film condensation of a liquid metal on an 
isothermal vertical surface with forced vapor flow is analyzed. Where necessary the 
interfacial resistance due to thermodynamic noneqidlibrium is included for a con
densation coefficient a = 1. A computer program has been developed to solve a finite-
difference analog of the governing partial differential equations and is applied here to 
the mercury-air and sodium-argon systems. Heat-transfer results are presented for 
vapor velocities in the range 1 to 100 fps with mass fraction of gas varying from 10~* 
to 3 X 10~2. The overall temperature difference ranged from 0.1 to 30 deg F while the 
temperature levels were 1200 and 900 deg Rfor mercury-air and 2000 and 1500 deg R 
for sodium-argon. The effect of noncondensable gas is most marked for low vapor 
velocities and high gas concentrations. At the lower pressure levels the interfacial 
resistance plays a dominant role, causing maxima in the curves of q/qNu versus x. 
For the mercury-air system the adverse buoyancy force causes vapor boundary-layer 
separation when the free-stream vapor velocity is low. 

Introduction 

T, I HE PRESENCE of a small amount of noncondensable 
gas in a vapor results in a markedly reduced condensation heat-
transfer rate. The magnitude of the reduction is very much 
dependent on the vapor flow pattern in the vicinity of the con
denser surface; high vapor velocities past the surface tend to 
alleviate the problem. For laminar film condensation on a 
vertical surface the limiting case of zero forced vapor flow was 
analyzed for constant properties (Boussinesq approximation) 
by Sparrow and Lin [ l ] , 2 while Minkowycz and Sparrow [2] 
extended the work to include variable properties and interfacial 
resistance due to thermodynamic nonequilibrium for the water-
vapor-air system. For forced vapor flow vertically downward, 
the water-vapor-air system was analyzed by Denny, Mills, 
and Jusionis [3]; this work has been extended by Denny and 
Jusionis [4] to other high-Prandtl-number liquids including 
ammonia, Freon-12, ethanol, butanol, and carbon tetrachloride. 
The objective of the present study is to complete the picture for 

1 This work was supported by NASA on research grant NSG 
237-62. Computer time for the numerical calculations was supplied 
by the Campus Computing Network and the School of Engineering 
and Applied Science of the University of California, Los Angeles, 
Calif. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at 

the Winter Annual Meeting, New York, N. Y., November 26-30, 
1972, of T H E AMEBICAN SOCIETY OP MECHANICAL ENGINEERS. 
Manuscript received by the Heat Transfer Division June 28, 1971. 
Paper No. 72-WA/HT-9. 

forced vapor flow by considering the low-Prandtl-number liquids, 
i.e., metals. 

The noncondensable-gas problem for liquid metals has a num
ber of unique features: (a) The high thermal conductivity of 
liquid metals implies that in most cases the temperature drop 
across the liquid film is very small compared to that in the vapor 
phase, (b) the low pressures typical of technological applica
tions require that the interfacial resistance due to thermodynamic 
nonequilibrium be included in the model, and (c) some im
portant systems, e.g., mercury-air, may exhibit boundary-layer 
separation due to an adverse buoyancy force. These features 
lead to a more complex physical problem than that considered in 
[3, 4] ; on the other hand, the characteristic low temperature 
drop across the liquid film can be exploited to simplify the calcu
lation procedure. 

Technological applications of liquid-metal condensation in
clude binary power cycles such as mercury-steam central power 
plants and use of a metal such as sodium as the working fluid of 
a power-generation cycle in a space vehicle. Thus the systems 
chosen for the present study are (a) mercury-air (here we en
visage an air leak into a mercury condenser) and (6) sodium-
argon (here there may possibly be residual gas after purging the 
equipment with argon). The results of our study will also be 
pertinent to a number of experimental investigations of liquid-
metal condensation, e.g., [5, 6] where unexpectedly low con
densation rates were measured, suggesting the presence of non
condensable gas. 

Laminar film condensation on a vertical surface with forced 
vapor flow parallel to the surface is a boundary-layer problem 
for which a self-similar solution cannot be obtained. An exact 
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analytical result requires solution of two sets of coupled boundary-
layer conservation equations, one set describing the liquid-film 
flow and the other the vapor flow. A previous result of Denny, 
Mills, and Gardiner [7] does permit a significant simplification 
of the solution procedure. In [7] it is shown that the behavior 
of the liquid film may be accurately analyzed using the Nusselt 
assumptions, whereby liquid acceleration and energy convection 
are neglected and physical properties are assumed constant. 
Due to the typically small temperature drop across the liquid 
film, the properties may conveniently be evaluated at the wall 
temperature. Thus the set of parabolic partial differential 
equations governing conservation of momentum, species, and 
energy in the vapor phase can be solved by finite-difference 
methods using a forward marching technique, extracting the 
necessary boundary conditions at the interface from a locally 
applied Nusselt analysis. Further simplifications are made 
when warranted. For example, when the temperature drop 
across the liquid film is negligible the liquid-vapor-interface 
temperature may be set equal to the wall temperature in the 
calculation procedure. Also, when the free-stream velocity is 
large the, liquid-surf ace velocity can be set equal to zero when 
solving the vapor-phase momentum equation. The exploita
tion of such simplifying assumptions greatly reduces the cost of 
the final numerical computations while maintaining an accept
able level of accuracy in the data. 

The problem parameters are mass fraction of noncondensable 
gas in the free stream m,i,„ free-stream velocity u„, overall tem
perature difference Te — Tw = AT, temperature level Te, and 
length of condensing surface L. The problem domain was re
stricted by choosing parameter values so as to (a) insure the 
absence of a rippled or turbulent film and (6) limit the heat flux 
to values attainable in practice. Thus the film Reynolds num
ber (Re = 4r/fit) will not be allowed to exceed 30, and the heat 
flux will not exceed 300,000 Btu/ftMir at x = 0.1 ft. 

Analysis and Calculation Procedure 
Physical Model and Coordinates. The coordinates along and 

normal to the surface are x and y respectively, and the corre
sponding velocity components are u and v. In the free stream 
the vapor has velocity ue and temperature Te, and the concen
tration of noncondensable gas is mi,„. The system total pressure 
P is determined from Tc and.mj,, by imposing the requirement 
that the free-stream vapor be saturated. The condenser wall 
is at a uniform temperature Tw. The condensate film has thick
ness S, which is a function of x and must be determined as part of 
the solution. At the liquid-vapor interface the temperature 
Ti and the vapor partial pressure Pi,; are also unknown and are 
determined in the course of the analysis. 

Conservation Equations and Boundary Conditions. For the vapor 
phase the equations governing conservation of mass, momentum, 
species, and energy, in boundary-layer form, are 

b b 
— (p,u) + — (p„«) = 0 
bx by 

bu bu b 
p,u —- + pvv — = — 

by by bx (M« 
bu\ 
— I + g(Pv - Pv.e) 
by J 

bmi 3mi b 
PvU — + pvv -~ = — 

bx by by 

I bm\ 
l * 0 " *T) 

(1) 

(2) 

(3) 

bT bT b 
PvU — + pvV — = ~ 

by by bx \CPv by J + 
kv bT b In Cp 

Cpv by by 

P^n 
+ r (Wi Cpi) 

bnh bT 

by by 
(4) 

Viscous dissipation and compressibility effects are ignored in the 
energy equation since low-velocity flow is to be considered. In 
addition, thermal diffusion and diffusional conduction (Dufour 
effect) are ignored in view of the results obtained in [2]. Under 
the Nusselt assumptions with the physical properties assumed 
constant at the wall values, the equations governing conservation 
of momentum and energy for the liquid phase are respectively 

dhi 

0 = 
d*T 

(5) 

(6) 

Equations ( l ) - (6) must be solved subject to the boundary condi
tions: 
vapor at infinity, y -*• <*> 

u —*• M e m,\ —>• mi,, 

liquid at the wall, y — 0 

u = 0 T = Tw 

interface continuity, y — & 

Ul,i = Uv.i = Ui 

i- l,i ~ i r , i = J- i 

jU! 

bu 

by 
IXv 

bu\ 

by\v,i 

(7) 

(8) 

(9) 

(10) 

(11) 

-Nomenclature-

©12 

L 
M 
m = 
m = 

Nu„ = 

P = 

1 = 
?Nu = 

= mass-transfer driving force 
= heat capacity (Btu/lb-deg R) 
= binary diffusion coefficient (ft2/ 

sec) 
= normal gravity (ft2/sec), also 

conductance (lb/ft2-sec) 
= thermal conductivity (Btu/ft-

sec-deg R) 
= length of condensing surface (ft) 
= molecular weight 
= mass fraction 

condensation rate (lb/ft2-sec) 
Nusselt number for mass trans

fer, gx/p SDu 
pressure (atm) 
wall heat flux (Btu/ft8-hr) 
Nusselt heat flux defined by 

equation (24), (Btu/ft2-hr) 

(R — universal gas constant (atm-
ft3/lb-mole-degR) 

R = specific gas constant (atm-ft3/ 
lb-degR) 

Re = film Reynolds number, 4r/,uz 
Sc = Schmidt number, p,e/pe"S)n 
T = absolute temperature (deg R) 

u,v = velocity components (ft/sec) 
x, y = boundary-layer coordinates (ft) 

P = liquid flow rate per unit width 

(lb/ft-sec) 
S = condensate film thickness (ft) 

5V = vapor boundary-layer thickness 
(ft) 

X = latent heat of vaporization (Btu / 
lb) 

p, — absolute viscosity (lb/ft-sec) 
p = density (lb/ft3) 

a = condensation (mass-accommoda
tion) coefficient 

r = shear stress (lb/ft-sec2) 
ft = stream function (lb/ft-sec) 

u = w- <A,-)/(<A« - *<) 

Subscripts 

e — in the vapor free stream 
i = at the interface 
I = in the liquid phase 
v = in the vapor phase 

w = at the wall 
1 = of vapor 
2 = of noncondensable gas 

Superscript 

* = zero mass transfer 
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if piudy = — 
ax J a 1 0.523CT V ^ f e *>•< -Pi 

— il.aat ' (r.-)] 

k, 

1 

= — TOX 4- k„ 

P»Dl2 d»ll 
-m (12) 

(13) 

In addition there is the equation of state for an ideal mixture, 
P = pvRT. The treatment of the interfadal resistance due to 
thermodynamic nonequilibrium follows Schrage [8] as presented 
in [9]. Since Schrage's theory is of doubtful validity for signifi
cant departures from equilibrium, the simple linearized form, 
equation (12), was chosen for use in all situations. The con
densation coefficient cr will be taken equal to unity in accordance 
with the recent experimental data of Wilcox and Rohsenow [10]. 
As discussed in [9] the velocity and temperature jumps at an 
interface with phase change are essentially the usual jumps of 
low-density flow in the slip regime and are usually negligible 
even when the interfacial resistance described by equation (12) 
is appreciable. Such is the case in the present study and hence 
the simple continuity relations, equations (9) and (10), may be 
employed. Closure of the problem is effected through a heat 
balance on the liquid film which determines its thickness S, 
namely 

P 
Jo 

hi — dx 
by f 

Jo 

piu[\ + Cpl{Ti - T)\dy[. 

+ 
rx cyr 

J o *• *V 
dx (14) 

For the range of parameter values of relevance to the con 
densation of metals, a number of further assumptions can be 
made. 

1 Since p„,„ <K pi, equation (5) becomes 

d2u 

bT 
2 Since kv — 

by 

° = »W + w 

<K — mX, equation (13) becomes 

52' 
to

by 
= — mX 

3 Also, Cpi(Ti — Tw) <K X, so equation (14) becomes 

bT Cx , bT f< 
I fcj —- dx = 1 

J o °y y-« Jo 

pmXdy 

(15) 

(16) 

(17) 

4 The only way the temperature profile in the vapor now 
affects the problem is via the vapor transport and thermodynamic 
properties. I t is therefore legitimate to simplify equation (4) 
and solve 

bT bT 
PvCpvU — 4- PvCpvV ~~ 

bx by &V \ ° by) 
(18) 

where essentially we have assumed that the specific heats of gas 
and vapor are equal. 

Thermophysical Properties. The properties pi, jj.n hi, and X were 
obtained directly from [11]. The saturation vapor pressure Ps»t 
was used in the form of curve fits to the data in [11], locally 
linearized for specific problems. The vapor-phase density was 
calculated according to the ideal-gas law, while gas-species 
transport properties were calculated following the Chapman-
Enskog kinetic theory of gases with the Lennard-Jones potential 
model. The required force constants were taken from Svehla 
[12]. The vapor-gas-mixture viscosity was calculated follow
ing Wilke [13] and the mixture thermal conductivity following 
Mason and Saxena [14]. 

Rearrangement of the Mathematical Problem. The major analyti
cal task is the solution of the vapor-phase conservation equations, 
( l ) - (3) and (18). However, the techniques for accomplishing 
this task have been established in previous work [3] so tha t it is 
convenient to pose the problem as if {bu/by)„,i and (,bmi/by)t 

are known. In this manner the overall closure of the problem is 
clarified. Also, the simple forms of the differential equations 
governing conservation of momentum and energy in the liquid 
film, equations (15) and (6) respectively, allow analytical integra
tion. After so doing, the equations to be solved may be written 
as 

p„33i2 bmx 

1 — mi by 

ki(Tj - Tw) 

U 

1 - 0.523 l>27r(RT; 

" J " 
J o 

riidx 
Pi& 

dpi ] 
2p,i HI \oy/v.i 

(19)' 

(20) : 

(21) 

(22) 

(23) 

which are five equations in the five unknowns Ti, m,\,i (or equiva-; 
lently -Pi,;), m, ut, and 5. 

Solution Procedure. The numerical procedure used to solve the 
vapor-phase conservation equations follows [3]. Briefly, the 
transformation of independent variables x, y -*• x, co, suggested 
by Patankar and Spalding [15], is introduced; co is a nondimen-
sional stream function defined as w ^ s (\p — ipi)/(ipe — ipt). The, 
partial differential equations are then approximated by fully" 
implicit finite-difference forms, and the resulting set of algebraic 
equations is solved at each step of the overall solution procedure 
as it is advanced in the x direction. The procedure used to solve; 
the set of equations (19)-(23) depended on the simplifying as
sumptions that could be invoked. For example, when the gas" 
concentration was high the resulting low condensation rates 
allowed the assumptions Ti = Tw, Pi.t = Pi,aat(2,.»), and m = 
0; for this situation the overall solution procedure was quite, 
straightforward. Also, even with low gas concentrations the; 
characteristically small temperature drop across the liquid film 
allowed a simple explicit calculation of the temperature difference 
Ti - T,„ [16]. 

Initial conditions for the parabolic problem were obtained 
from solutions valid in the limit x -*• 0, where both ut and the 
gravitational forcing go to zero. For negligible interfacial re
sistance the overall problem is self-similar and was solved using • 
the iterative methods of Wortman [17]. With interfacial re-, 
sistaiice, — m approaches a finite upper bound as x —*• 0, given by 
equation (21) with Pi,,: = Pi,« and Ti = Tw. Furthermore, ft 
reasonable value of x > 0 could be found for which m = m|i-ol 
the associated vapor profiles were obtained from the self-similav 
solution by assuming local self-similarity. 

Results and Discussion 
Numerical solutions for condensation heat transfer from 

mercury-air and sodium-argon mixtures were obtained, and 
comprehensive data in the form of g/?Nu versus x are presented 
in [16]. Here q^a is the classical Nusselt result based on overall 
temperature drop Ts — T,„ and assuming zero vapor drag 

§Nu 
'gpi*n,KTe - Tw) 

4:/J.lX 7 (24) 

The parameter values studied included m2,e = 10~"5, 10 4, 10-3. 
10~2, 3 X 10~2; u, = 1, 3, 10, 30, 100 fps; AT = Te - Tm = 
0.1, 0.2, 0.3, 0.5, 1.0, 3, 10, 30 deg F ; for mercury-air T. = 1200 
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Fig. 1 Condensation heat transfer: mercury-air, T„ = 1200 deg R, 
m2i(p = 0 . 0 1 ; effect of uc and AT 

and 900 deg R, while for sodium-argon Te = 2000 and 1500 deg 
R. The length of condenser wall was 0.5 ft; the estimated 
accuracy of the data for q/q^u in the range 0.1 < x < 0.5 ft is 
5 to 10 percent. The average computer cost per case was about 
$2.50 ( IBM 360/91 system). Selected data will be presented 
here to illustrate (a) the effects of the problem parameters, (6) 
the onset of buoyancy-induced vapor boundary-layer separation, 
and (c) the role played by the interfacial resistance. 

Results for High Gas Concentration. Figures 1 and 2 show the 
effect of vapor velocity u, and overall temperature difference AT 
for mercury-air and sodium-argon respectively. At these 
high gas concentrations (mi.e = 0.01 and 0.03 respectively) the 
interfacial resistance and temperature drop across the liquid 
film are negligible. The main features of the data are (a) the 
heat flux decreases with increased gas concentration, (6) the 
heat flux increases with vapor velocity, and (c) the heat flux in
creases as x —*• 0. These features are explained using the govern
ing equation for mass transfer across the vapor-phase boundary 
layer; following Spalding [18] we write 

1 
(25) 

where (B = (mi,, — mi,%)/(m.i,i — 1) is the mass-transfer driving 
force and g = pSDuNum/a; is the mass-transfer conductance. As 
m,i,e —*• 1, (& —*• ~1 and rh -*• —c° ; thus the noncondensable-gas 
problem involves a strongly nonlinear coupling between the 
factors (B and g. Nevertheless equation (25) gives a qualitative 
appreciation of the behavior of rh, and hence q ( = mX). An in
creased gas concentration simply serves to decrease the driving 
force 63 by decreasing the free-stream vapor concentration TOj.,,. 
In the limit of zero mass transfer, and for negligible buoyancy 
forcing, the mass-transfer conductance has the usual dependence 
for flat-plate boundary-layer flow, namely 

9 yw/2x~ >A (26) 

The observed dependence of q on ue and x follows directly from 
equation (26). The effect of overall temperature drop AT is 
more complex. In Fig. 1 q/q$u is seen generally to increase 
with AT, although at 10 fps q/qNu is identical for AT = 1 and 
".3 deg F ; in Fig. 2 q/qNu is seen to decrease with increasing AT. 
The effect of AT" is usually small, but an exception is noted for 
cases M E and M D in Fig. 1; as AT increases from 1 to 10 deg F , 
?/?Nu increases about 25 percent. The anomaly is explained 
as follows. The mercury-air system at 1200 deg R has a high 
vapor density ( ^ 0 . 4 lb/ft3), some fortyfold higher than for 

- W ŝ. 
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Fig. 2 Condensation heat transfer: sodium-argon, Te = 1S00 deg R, 
ni2,e = 0 .03; effect of ue and AT 
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30 

Fig. 3 Condensation heat transfer: mercury-air, Te = 1200 deg R, 
ue = 1 fps; effect of im,e and AT on vapor boundary-layer separation 

sodium-argon at 2000 deg R. Equation (26) shows tha t the 
mass-transfer conductance, and hence the condensation rate 
— rh, will be correspondingly high. At x = 0.3 ft the values of 
-rh are 0.075 and 0.010 lb/ft2-sec for cases M E and M D respec
tively. Both cases are for the highest vapor velocity, u, = 100 
fps, and vapor drag on the liquid film has a significant effect on 
!Z/9NU- In the limit of strong suction, n = — rhue, which indicates 
that the higher values of q/qztu for case M E should be attributed 
to vapor drag. 

Figure 3 illustrates the phenomenon of buoyancy-induced 
boundary-layer separation. In contrast to the sodium-argon 
system, the mercury-air system is characterized by a noncon-
densable gas lighter than the vapor. Thus gas buildup at the 
interface gives rise to a buoyancy force directed opposite to the 
external flow, causing the vapor boundary layer to separate at 
some distance down the wall xs. Figure 3 shows typical results 
for ue — 1 fps. Since the solution is advanced in discrete z-steps, 
the exact separation point cannot easily be determined; the 
dashed lines in Fig. 3 represent the steps in which the velocity 
gradient at the interface goes negative. Combined forced- and 
free-convectjon flow on a vertical wall has been analyzed by 
Acrivos [19] for the situation of zero suction. With condensa
tion the suction rate can be quite high and separation is signifi
cantly delayed. From Fig. 7 of [19] for a Schmidt number of 
0.32 the distance to separation in the absence of suction is 

0.21piUe2 

(27) 
ffiPe - Pi) 

The values of xs* are shown on the curves in Fig. 3. In view of 
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Fig. 5 Condensat ion heat transfer: s o d i u m - a r g o n , T„ 
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1500 deg R, 

equation (27) we would expect a fourfold increase in x, as ue is 
increased from 1 to 2 fps. The actual increase was slightly 
greater due to higher mass-transfer conductances, and hence 
higher condensation and suction rates associated with increased 
velocity. The computed vapor velocity profiles were found to 
assume the characteristic S-shape at separation as the gradient 
(dit/d|/)i approached zero. The behavior of the mass-transfer 
conductance g and hence the interface concentration gradient 
(d??ii/dy)i as separation is approached is also shown by Fig. 3. 
In general g remains relatively large at separation, though a 
falling off is in evidence, especially for cases MR and MS. 

Results for Lower Gas Concentrations. When the interfacial re
sistance is included the basic shape of the curves of g/gNu versus 
x changes character. Since — m now has a maximum value, 
given by equation (21) with Plti = Pi, , and T; = Tw, and gNu 
varies a s i " 1't, the ratio g/gNu must approach zero asx-*• 0. In 
general g/gNu increases rapidly with x to attain a maximum value; 
thereafter the character of the curves is similar to that of the 
curves of Figs. 1 and 2, due to the decreased interfacial resistance 
accompanying the lower values of heat flux. In some cases the 

UF: m, = 10 ,AT = 10 deg F 

AT = 3 deg F 

UE : m2 = 10 ,AT = I deg F 

F ig . 6 Condensat ion heat transfer: mercury -a i r , T, — 900 deg R, u, = 
100 fps; effect of AT and gas concentrat ion 

expected maximum in g/gNu is not attained before x = 0.5 ft, 
the location at which computing was usually stopped; in other 
cases the maximum occurs at too small a value of x to be shown 
in the figures. 

Figure 4 shows the effect of gas concentration for the sodium-
argon system at Te = 2000 deg R; the marked sensitivity of 
q/qNu to mi,, is readily seen. Figure 5 shows the effect of gas 
concentration at Te = 1500 deg R; comparing Figs. 4 and 5 
demonstrates that the g/gNu levels are much lower at the lower 
temperature. This feature is a result of the marked tempera
ture-level-dependence of the interfacial resistance; the saturation 
vapor pressure increases exponentially with temperature and the 
interfacial resistance is roughly inversely proportional to vapor 
pressure. Figure 5 also shows that for the lowest gas concentra
tions m2,e = 10~5 and 10~4 (cases KA and JA respectively) the 
maximum value of g/gNu is not attained before x = 0.5 ft. 

Results for the mercury-air system are shown in Fig. 6; since 
the temperature level is low (900 deg R) and vapor velocity high. 
(100 fps), the interfacial resistance can be expected to have a 
significant effect on g/gNu- The delayed maxima for cases UA 
and TA confirm this expectation. A comparison of cases UF 
and UA indicates a reversal in the influence of AT on g/gNu at 
x = 0.5 ft, a further illustration of the complex manner in which 
AT enters the problem. Perhaps the most striking feature of 
Figs. 4-6 is that the variation of g/gNu with x shows marked 
differences from case to case as the vapor velocity, temperature 
level, overall temperature difference, and gas concentration are 
varied. 
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Conduction through Droplets during 
Dropwise Condensation 
An experimental investigation was undertaken in which dropwise condensation was 
caused to occur on the upper side of a 0.001 -in-thick horizontal copper condensing 
surface. The lower side of the condensing wall was convectively cooled, and the cooled-
side temperatures under growing droplets were measured using infrared-radiation 
techniques. Temperature measurements showed good agreement with the results of a 
finite-element analysis of the droplet and condensing surface. Both experimental and 
analytical results pointed to the existence of an area of very high heat transfer right 
around the droplet perimeter, and to the importance of the condensing wall as a 
diffusing mechanism in dropwise condensation. 

L 
Introduction 

I HE SUBJECT of dropwise condensation has received a 
considerable amount of attention since its discovery as a separate 
entity by Schmidt, Schuring, and Sellschopp [ l ] 1 in 1930 and the 
confirmation of its existence by Spoelstra [2] in 1931. Subse
quent investigations into dropwise condensation can be con
sidered within the framework of three essentially separate cate
gories. 

First, there have been a number of strictly experimental in
vestigations undertaken to determine the magnitudes of heat-
transfer rates possible with dropwise condensation [3-8]. The 
purely experimental approach, however, has had relatively little 
success. The only general conclusion that has been reached is 
that dropwise condensation can allow much higher heat-transfer 
rates than even the comparatively effective film wise condensation. 
One of the major problems with the experimental approach has 
been the large number of factors which can influence dropwise 
condensation. 

The second category • of investigations concerning dropwise 
condensation has been in the area of finding suitable "promoters" 
which would cause dropwise condensation to occur on clean metal 
surfaces. The classical papers in this area were published in 1933 
and 1935 by Nagle and Drew [9] and by Drew, Nagle, and Smith 
[10]. More recent papers [11-14] have discussed the theoretical 
requirements for a good promoter: I t should consist of a long-
chain hydrophobic hydrocarbon molecule with a radical on one 
end which can be strongly adsorbed onto the metal surface. Re
cent advances in the application of very thin plastic films to 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of T H E AMERICAN 

SOCIETY OF MECHANICAL ENGINEERS and presented at the AIChE-
ASME Heat Transfer Conference, Denver, Colo., August 6-9, 1972. 
Manuscript received by the Heat Transfer Division November 30, 
1970; revised manuscript received July 19, 1971. Paper No. 72-HT-50. 

metal have opened additional possibilities for producing long-
lasting surfaces giving dropwise condensation. 

The third category of investigation has been into the basic 
mechanism of dropwise condensation. Explanations of the 
physical processes occurring during dropwise condensation polar
ized around two conflicting ideas. On the one hand, several 
at tempts have been made to explain dropwise condensation by 
starting with the assumption that the droplets must pose a large 
resistance to heat flow, and thus all condensation of importance 
must occur directly on the condensing surface or on a very thin 
liquid layer between droplets [15-20]. Heat transfer through 
the droplets was assumed to be negligible. The opposing school 
of thought has held that the free-surface-energy relationships 
which must be satisfied before dropwise condensation can occur 
preclude either the condensation of vapor directly onto a bare 
condensing surface between droplets or the formation of any thin 
liquid films. 

A review of the experimental and analytical evidence presently 
available in the literature has led most observers to the conclusion 
that the important phenomena occurring during dropwise con
densation involve the droplets themselves rather than anything 
between the droplets. The bulk of the evidence for this has 
centered around studies of droplet nucleation and droplet growth 
rate. However, the exact mechanism of heat transfer through 
the droplet has still not been conclusively determined. Nearly 
all the analytical studies which have been done have been based 
on conduction, and have analyzed the heat transfer for a hemi
spherical droplet with known, fixed temperatures on the outer 
boundaries. In most studies, the hemispherical surface of the 
droplet has been assumed to be at the saturation temperature of 
the condensing vapor and the flat base of the droplet has been as
sumed to be at some other uniform temperature. This has led 
to an anomaly a t the perimeter of the droplet where the two 
surfaces intersect and where two boundary temperatures have 
thus been assigned. Since the length of the conduction path 
through the droplet goes to zero as this perimeter is approached, 
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the predicted heat-transfer rates have gone to infinity. This has 
generally been regarded as a mathematical difficulty in the 
method of solution, and the usual recourse has been to ignore 
some arbitrarily chosen region of the droplet perimeter from the 
final heat-transfer-rate calculations. If conduction is the appro
priate mechanism of heat transfer through the droplet, however, 
solutions near the droplet perimeter so dominate the heat-
transfer-rate calculations that the answers obtained depend 
strongly on just how close to the edge of the droplet one considers 
the temperature solutions to be valid. McCormick and Baer 
[21], for example, obtained a 60 percent increase in the heat-
transfer rate predicted through a single droplet by moving the 
outer limit of their heat-transfer-rate integration from 95 to 99 
percent of the droplet radius. 

One of the most recent conduction analyses has been published 
by Umur and Griffith [13]. They studied a hemispherical drop
let with an isothermal base, but used an equivalent film coefficient 
derived from the kinetic theory of gases to predict the coupled 
heat and mass transfers from the vapor to the droplet. The 
Legendre series they obtained for their temperature solution 
converges only slowly, if at all, over parts of the droplet if the 
condensing film coefficient gets large or the thermal conductivity 
of the condensate is too low. They circumvented this difficulty 
by integrating over the droplet to find an average temperature on 
the hemispherical surface. 

The question of whether or not conduction is a valid mechanism 
on which to base single-droplet heat-transfer-rate analyses has 
not been conclusively settled by previous investigators. A recent 
analytical investigation undertaken by Lorenz and Mikic [22] 
has indicated that thermocapillary flow due to surface-tension 
effects along the droplet surface is not an important par t of the 
problem. This conclusion was also reached by the authors of this 
paper from a simple experiment in which titanium dioxide par
ticles were used to help visualize the flow within condensate 
droplets. Observation of the particles indicated very little flow 
except for a brief period following the coalescence of the droplet 
with a neighboring droplet. (Immediately following such a 
coalescence intense mixing took place.) 

In the investigation described in this paper, attention was 
focused on the problem of heat transfer through a droplet due to 
conduction. If conduction is the correct mechanism, then very 
high heat-transfer rates should occur right near the droplet 
perimeter, while the heat-transfer rates through the center of 
the droplet should be much lower. The net result of this, for a 
convectively cooled condensing wall, should be a temperature 
gradient along the condensing surface under the droplet, with 
higher temperatures occurring under the droplet perimeter. 
This investigation was concerned with discovering whether, in 
fact, such a temperature gradient did exist and whether or not its 
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Fig. 2 Schematic arrangement of the salient test apparatus 

magnitude could be predicted on the basis of a single droplet 
analysis based on conduction. 

The primary thrust of this investigation was experimental. 
The experimental procedure employed was to measure the tem
peratures obtained on the cooled side of a very thin condensing 
wall at various points immediately under growing droplets. 
Copper foil having a thickness of 0.001 in. was used as the con
densing surface to limit the lateral diffusion of heat under the 
droplet and thus to accentuate the expected temperature profile. 
These temperatures were then compared with those obtained 
from a finite-element analysis of a hemispherical droplet resting 
on a cylindrical condensing surface of slightly larger outside 
diameter. 

Experimental Investigation 
A preliminary analytical investigation revealed that mea

surable temperature gradients could be expected on the cooled 
side of a condensing surface only for relatively large droplets 
resting on very thin condensing walls. The temperature gradient 
was of interest because it would allow identification of areas of 
high heat-transfer rate under the droplet, and thus give an indi
cation of whether or not the expected high heat-transfer rates 
were taking place around the edge of the droplet. 

The condensing surface chosen for this investigation consisted 
of 0.001-in-thick copper foil. This was placed in a horizontal 
position to encourage the growth of the large droplets needed. 
The condenser was designed to allow easy interchange of the 7/s-
in-dia condensing surfaces and to keep the velocity of the steam 
over the test surface essentially zero. Heat-transfer rates on the 
order of 12,000 Btu/hr-ft2 were realized with this apparatus. A 
cross section of the condenser is shown in Fig. 1. 

A schematic diagram of the complete testing arrangement is 
shown in Fig. 2. The steam used as the condensing vapor was 
generated in a small, electrically heated boiler, using a distilled-
water charge. Infrared radiometry was chosen as the means 
for measuring, without appreciably changing, the temperatures 
on the cooled side of the condensing surface. Air forced through 
a rectangular channel at high velocities was used as the cooling 
medium, as it was essentially transparent to the infrared radiation 
of interest. The cooling-air temperature was measured with a 
single, bare, unshielded thermocouple located in the center of the 
channel and just downstream of the condensing surface. Errors 
possible with this arrangement were not considered significant in 
view of the large temperature difference between the condensing 
surface and the air. A visual record of the sizes and locations 
of condensate droplets was obtained by a movie camera mounted 
above the condenser. 
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Fig. 4 Typical radiometer output record; corresponds with condensation
events shown In Fig. 3

to each experimentnl run t.he syst.em was evacuated using a
vaeuull1 pump. The pressure within the syst.em durinp; eVl1eua
tion was essentially equal to the saturation pressure of the water
in the boiler, and equaled about 1'/. to 2 in. of mereUl'Y. The
point. for nLlachment of Lhe pump was ehosen sueh I,hat the flow
of va.por would help to flush out any noneondensable gases in tho
eondenser or in the lines. The boilinp; oeclll'l'inp; in the liquid
I~harp;e d1ll'ing this time helped t.o drive out. any remaining air
in the t.riply distillell waLeI'. The water mmlOmeter used for
pressure measuremen t. during t.he l'Ims eould not be left can.
neeted dl1l'ing this time; to prevent the int.roduetioll of inert fl;uses
from t.his soul'<:e t.lw manometer and all connectinl?; lines (which
were deliberat.ely kept short) were filled wit.h wat.er. Dl\l'ing
aet.ual test.ing the vapor pressure was kept. aboveatmospherie
pressUl'e 1.0 fUl't.her ins1ll'e against ail' leakage. While no direct
measurements were made of t.he amount of noneondensable gases
present in the vapor, the eonsisteney of results obtaiIwd from mn
t.o run inllicated very little erfel~t on t.he experimentltl result.s from
t.his cause. On those ol~casions when some ail' en tered the sys
tem due to equipment malfunetion, a dramatie slowing of the
condensation rate occurred whieh was easy to detel~t.

I I, was necess:try to eoat. the I~opper surfaee with a promoter to
insure dropwise eondensat.ion. Ben7.yl mereaptan was chosen
for this becnuse it had contnet angles neal' 90 dep; when wat.er
vapor was condensing, so that eondensate droplets were very
ne:trly hemispherical. The promot.er was swabbed onto the
cOllilensinp; sllrfaee following a thorough ehmnieal deaning.
Exeess promoter was then rinsed oft', both before installation in
the condenser and during the calibration of the radiometer which
preceded eaeh run.

The radiome\(~rwhich was used to measure the temperature of
the cooled ~ide of the condensing wall was found by direct cali
bration to hllve a sensitivity of about I v/dep; F when viewing
the chemil~:dly oxidi7.ed copper test s\ll'faces. Calibration was
done with elwh test s\ll'face in place immediately prior to each
run. It WllS tWI~omplishell using It length of tubing placed on
the open condenser in such l1. way that t,he eopper test surface
fonned l1. part of the bottom of lln open eontainer. This "con
tainer" was then filled wit.h water which was heated and vig
orously stirred. Wit.h no air flow thl'Ough the channel, the down
wal'll-facing eondensinp; surface was assumell to be at the same
tempemtUl'e as the stirred water with which it was in cont.act on
its upper smftwe. The water-bath temperat.me was measured
using a preeision pot.entiometer and three eopper-constantau
thennocouples wit·h an iee-bath reference.

The radiometer measured an avera!!;e temperature over an
urea about 1hz in. in diamet.er. The US percent response time
of the instrument, as u~ed in this investi!!;ation, was found to be
O.li sec, which was adeljuate for the eomparatively slow conden
sation events under scmtiny. lnit.ially, it was hoped to obtain
an entire tell1peratl1l'e profile llnder a droplet by scanning the
field of view of the radiometm- acl'OSS the test surface. The varia
tion~ in emissivity of the test smfaces proved an insurmountable
problem in this, how(~ver, since variations in emissivity werc in
distinguislmble fl'Om chan!!;cs in temperatl1l'c when running.
It was found IHlce~sary to fix the location of the field of view of
the radionwter al1ll then to calibrate each new test surface in
plaee just prior to mnnin!!; a test. In fact, the pl'Oblem of ob
taining It high and reasonably uniform emissivity on the cooled
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Fig. 3 Photographic record of condensation events corresponding with
the radiometer record of Fig. 4; black dot in center indicates localion whose
temporature was being monitored

Very high air-flow rates were used through the 1/4-in. by 2-in.
cross-section channel in order to obtain sufficiently high values
for the air-side heat-transfer film coefficient. Calculations pre
dicted a value of 92 Btu/hr-ftZ-deg F, and measurements made
using a dummy test assembly incorporating a copper rod heated
on one end yielded results ranging from 96 to 115 Btu/hr-ftz-Ileg
F. For purposes of calculation in this investigation an avemge
figure of 105 Btu/hr-ftZ-deg F was used.

Contaminants and noncondensable gases always present. prob
lems in experiments involving condensation. The prec!lut,ions
taken to prevent contaIuination began with the use of a specially
constructed closed steam-supply system which was chemically
cleaned after final assembly. The entire system was carefully
sealed so that it could maintain a vacuum of about 28 in. of
mercury for a 24-hr period without additional pumping. Prior
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side of the test surface was one of the most difficult parts of the 
experimental side of this investigation. Paints and coatings 
were ruled out, as even a coating 1 mil thick had an appreciable 
insulating effect and thus upset the experiment. The desired 
effect was finally obtained by roughening the copper foil using 
fine grit and a low-pressure air gun, then oxidizing the cooled side 
of the copper foil after it had been mounted on its support for 
installation in the test condenser. 

The use of a fixed field of view for the radiometer worked better 
than might be expected. The random coalescences between 
droplets served to move the droplets relative to the radiometer 
field of view at reasonably frequent intervals. Thus it was pos
sible to obtain temperatures under different parts of a droplet 
having nearly the same diameter. 

Samples of the output records obtained in this investigation 
are shown in Figs. 3 and 4. Fig. 3 shows a typical photographic 
record obtained of the condensation events, with a black dot 
placed on the photographs to indicate the position and relative 
size of the area being monitored by the radiometer for tempera
ture. The radiometer record for the time period covered by the 
photographs has been shown in Fig. 4. 

Further details and discussion of the experimental equipment 
can be found in Hurst [23]. 

Results of the Experimental Investigation 
Some typical results from the experimental investigation are 

shown in Figs. 5 and 6. The experimental results are shown as 
squares. The temperature profiles shown came from a finite-
element analysis to be discussed in the following section. 

The experimental results are presented in the form given be
cause the temperatures measured were a strong function of both 
the droplet diameter and of the radial location of the spot where 
the temperature was being measured. The information available 
on any one droplet size was limited by the testing method. I t 
was necessary to sift through the data obtained from different 
runs and find occasions when the area within the radiometer field 
of view was covered with droplets having identical diameters for 
tests in which the saturation pressures in the condenser and 
the cooling-air temperatures were identical. 

Since the droplet locations were somewhat random, a great deal 

of data had to be taken in order to find the information shown. 
In the process of running the tests and reviewing the data, how
ever, a number of things became evident. The most important 
of these was that the surface temperature increased as the edge of 
the droplet was approached from the inner part of the droplet. 
This has been indicated in the results shown, and it was even 
more dramatically illustrated during a test run. Droplet move
ment due to coalescence often placed the radiometer field of 
view at a different radial location under a droplet whose diameter 
had been increased by a very small and often negligible amount. 
If the droplet perimeter were closer to the radiometer field of 
view, the temperature of the condensing surface increased, 
whereas if the radiometer field of view ended up farther from 
the droplet edge the temperature was found to decrease. 

Further confirmation of the importance of the l iquid-metal-
vapor junction in the transferring of heat came from the ap
parently erratic temperature changes noticed toward the end of a 
run when the condensing surface became covered with several 
rather large puddles of condensate. The temperature changes 
were found to be associated with the movement of one of the 
edges of the puddles of condensate over the area where the tem
perature was being monitored. Markedly higher temperatures 
were observed around the edge of a puddle, indicating much 
higher heat-transfer rates in that vicinity. 

Analytical Investigation 
The analytical part of this investigation was undertaken to 

determine if the temperatures measured experimentally could be 
predicted on the assumption that heat transfer through growing 
droplets occurred primarily due to conduction. Since experi
mental measurements were made on the cooled side of the con
densing wall, it was necessary to include a portion of the metal 
surface in the analysis. 

The model chosen for analysis is indicated in Fig. 7. A satu
rated vapor was assumed to be in contact with a hemispherical 
condensate droplet which rested on a flat, convectively cooled 
condensing surface. An equivalent interfacial "film" coeffi
cient was defined to calculate the coupled heat- and mass-transfer 
rates from the saturated vapor to the condensate surface as func-
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Fig. 8 Analytical results for droplets of different sizes resting on various 
copper condensing walls 

tions of the temperature difference between the vapor and the 
droplet surface. The value for this film coefficient was obtained 
from work done by Silver [24] and Schrage [25], among others, 
who used the kinetic theory of gases as a starting point. Within 
the droplet and within the condensing surface the mechanism of 
heat transmission was considered to be conduction. The accu
mulation of condensate within the droplet necessarily implies a 
growth in the droplet diameter, and this was included in the 
analysis. This inclusion brought with it the necessity of using 
transient rather than steady-state conduction equations. 

The part of the condensing surface which was in contact with 
the condensing vapor, but which was outside the area covered 
by the droplet, was considered to be adiabatic. Thus, one role 
of the promoter could be envisioned as imposing a reversible 
(adiabatic) barrier between the vapor and condensing surface 
when it is not covered by liquid droplets. Since a single droplet 
was to be studied, the droplet was assumed to be one of a num
ber of similar droplets resting on the surface, and a general bound
ary condition was required for solution. This was approxi
mated by a cylindrical adiabatic surface through the condensing 
wall at twice the droplet radius. These assumptions gave rise 
to the prediction of condensing-surface temperatures which were 
unrealistically far below the saturation temperature for the vapor 
with which the surface was in contact. In retrospect, the pri
mary error in these assumptions appears to be in the choice of 

the maximum diameter of the condensing wall. Some subcooling 
should exist in that part of the condensing wall which is not 
covered by a droplet, but when a critical value of subcooling is 
reached, nucleation of a new droplet should start. McCormick 
and Baer [21] have estimated that 0.4 deg C might be the critical 
amount of subcooling for steam on a promoted surface. Based 
on this, the analytical results obtained should predict droplet 
nucleation very near the edge of most droplets. For other vapor 
and condensing-wall combinations, however, the situation might 
be quite different. For example, Koutsky, Walton, and Baer 
[26] report critical subcooling of 15 to 19 deg C for polyethylene 
condensing onto single-crystal alkali halides. This would imply 
a comparatively wide droplet spacing and dictate use of outer-
condensing-wall diameters comparable to those used in this 
analysis. 

The physical model which has been described leads to a coupled 
set of partial differential equations. These equations were 
written, but all at tempts to find a closed-form analytical solution 
have proven fruitless. The approach, therefore, was through a 
finite-element analysis. The nodes chosen to represent the 
lumped thermal capacities have been indicated in Fig. 7. 

The calculations required for the finite-element analysis were 
performed on a computer using a backward-difference approach. 
Backward differences in time were selected to minimize compu
tation-stability problems, particularly in the elements near the 
center of the droplet. A fractional element at the droplet bound
ary was changed in size after each time step to account for the 
necessary increase in droplet size due to condensate accumulation. 
This necessitated changing a large number of coefficients in the 
finite-element equations after each time step, preventing the effi
cient use of any matrix-inversion technique and forcing the use 
of large blocks of computer time to obtain the desired answers. 

Some sample results obtained from the analysis are shown in 
Fig. 8, where the isotherms have been shown for some droplets of 
different sizes on a thin condensing surface as well as for a droplet 
resting on a relatively thick condensing surface. Results are 
also shown in Fig. 9, but in tha t figure only the air-side con
densing-wall temperature is shown for comparison with the ex
perimental results. 

As can be seen from an examination of the predicted isotherms 
in Fig. 8, the condensing wall, with its high thermal conductivity, 
had a marked effect on the temperature distributions under and 
within the droplet. For either very small droplets or compara
tively thick condensing surfaces, the conductance of the metal 
was sufficiently high to cause the base of the droplet to become 
very nearly isothermal. For larger droplets resting on very thin 
condensing surfaces, however, a considerable temperature gra-
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client was predicted along the metal wall. These profiles reached 
n peak temperature underneath the edge of the droplet, indicating 
the expected region of high heat transfer from the droplet. Just 
how sensitive the solution was to the condensing-wall thickness 
ffas of some interest in the design of the experimental equipment; 
for a droplet diameter on the order of 0.1 in., a change in con
densing-wall thickness from 0.001 in. to 0.005 in. was sufficient 
to make the base of the drop nearly isothermal. 

The sensitivity of the temperature and heat-transfer solutions 
to the ability of the condensing wall to transfer heat laterally 
underneath and around droplets is one of the interesting results 
from this investigation. Apparently the condensing wall acts 
very much like an extended surface in convective-cooling situa
tions. I t receives heat from the droplet perimeter, where very 
high heat-transfer rates are possible, and diffuses this heat lat
erally over a larger area so that it can be transferred into the 
coolant across a comparatively high thermal resistance. 

A detailed study of the temperature predicted throughout the 
droplet and condensing wall at successive times in the calculation 
indicated that transient thermal effects were of very little con
sequence in the model as defined. I t now appears evident that a 
steady-state-temperature solution assuming an isothermal drop
let base is justified for most practical applications. Of course, 
in this investigation the experimental conditions were chosen so 
as to obtain large temperature gradients under droplets, so the 
results from the finite-element analysis were necessary for com
parison with experimental information. 

Finally, an at tempt was made to use the temperature results to 
calculate the rate of heat transfer through a droplet [23]. The 
limitations of a finite-element analysis became evident here, as 
it was found that from 83 to 98 percent of the calculated total 
heat transfer through a droplet was coming in through the 
"corner" element where the hemispherical surface of the droplet 
intersected the condensing surface, even for very small droplets. 
Droplet growth rates obtained represented primarily the increase 
in the hemispherical liquid-surface area of this element, and thus 
were not considered reliable. I t appears that a good solution 
to the heat- and mass-transfer problem considering just the area 
very near the perimeter of the droplet could predict the overall 
heat-transfer rate to within about 15 percent or better even if 
the contributions of the upper part of the droplet were ignored. 

The results of McCormick and Westwater [27] also support 
this view. Assuming a hemispherical droplet, constant thermal 
properties, and a heat-transfer rate proportional to an exponent 
of the droplet diameter, q = Cdn, it can be shown tha t [23] the 
droplet radius is a function of time according to the expression 

2(»-D(3 - n)c , s 

wpcL 

where r is droplet radius, pc is condensate density, L is latent heat 
of vaporization, r0 is initial droplet radius, and t is time. If the 
heat-transfer rate is proportional to droplet diameter, n = 1, 
and the expression becomes 

r2 = (const) t -f- )'o2 

On the other hand, if the heat-transfer rate through a droplet is 
Proportional to the hemispherical surface area of the droplet, 
•t would be expected that q = Cd2 (n = 2), and the expression 
shows that the droplet growth rate should be constant. The 
experimental results of McCormick and Westwater, when ex-
'tnined closely, show the apparent relationship to be 

,.i.75 = (const) t + J'o1-76 

giving q = Cd1-25. Apparently, even for the microscopically 
stoall droplets investigated by McCormick and Westwater, the 
heat-transfer rate into a droplet is much more closely related to 
"8 diameter than to its hemispherical surface area. 

Observations on the Results of This Investigation 
The first and most obvious observation is that there was very 

good agreement between the predicted temperatures and those 
measured in the experiments, despite some of the restrictive as
sumptions made in setting up the analysis and the approximations 
inherent in the finite-element approach. This is particularly 
true in areas near the droplet center line. 

Because of the finite diameter of the area where the tempera
ture was being measured by the radiometer, it was impossible to 
determine experimentally the temperature right under or just 
outside of the edge of a droplet. This was unfortunate, since 
it was at these locations that the accuracy of the finite-difference 
solution and the assumptions was the least. However, the trend 
in the experimental results unmistakably bore out the results 
obtained analytically: A significantly higher temperature did 
exist right under the edge of the droplet, which indicated a very 
high heat-transfer rate in that vicinity, The droplet thus be
comes, in effect, a mechanism for producing a very " th in" cooled 
liquid perimeter onto which the vapor can readily condense. 

A conclusion of engineering importance then emerges from 
examination of the mean temperatures under different-sized 
droplets: I t can be seen that the mean temperature under a 
small droplet is higher than the mean temperature under a large 
droplet. Since the controlling thermal resistance in a dropwise-
condensation situation is usually on the coolant side of the wall, a 
higher condensing-surface temperature implies that the overall 
heat transfer will be greater. Thus small droplets will be more 
"active" in transferring heat than large droplets, and the most 
desirable situation is to have the condensing surface covered with 
a population of droplets which are as small in diameter as pos
sible. This conclusion was verified experimentally during the 
early stages of a run, when the condensing surface was covered 
by a rather uniform population of small droplets. During this 
period, the average temperature being measured by the radiome
ter dropped steadily as the average droplet diameter increased. 
Temperatures measured were consistent with the mean tem
peratures predicted for very small droplets. Similar results were 
observed when droplet coalescence suddenly swept the area 
where the temperature was being measured free of condensate: 
The temperature of this area quickly rose to a value consistent 
with the nucleation and growth of a population of very small 
droplets. 

The next important observation has to do with the way in 
which the droplet reacts with the condensing surface. So far 
as the condensing surface is concerned, the droplet could be re
placed with a ring heat source of the appropriate intensity. 
This is a useful concept, because it then becomes obvious that 
one of the primary roles of the condensing surface is to take this 
relatively concentrated heat input and diffuse it laterally so that 
it can be transferred out of the condensing surface across a com
paratively high heat-transfer resistance into the coolant stream. 
I t operates in a manner entirely analogous to a fin in a forced-
convection situation. This is an important conclusion, as it 
implies that there must be some sort of minimum condensing-wall 
thickness below which its function as a fin cannot be efficiently 
carried out. In other words, the minimum condensing-wall 
thickness may not be best for use with dropwise condensation. 
Calculations done in designing the experimental apparatus, for 
example, predicted lower heat-transfer rates when very thin con
densing surfaces were tried. 

The role of the condensing wall in dropwise condensation has 
been recognized by other investigators, and in particular by 
Mikic [28]. Mikic pointed out that nonuniform temperatures 
could be expected on condensing walls during dropwise conden
sation due to the varying sizes of the droplets in an assumed popu
lation. He then proceeded to discuss this effect in terms of a 
"constriction resistance" which was a pseudo-thermal resistance 
introduced into the analysis to account for the fact that the sur
face area of the condensing wall available for small "active" 
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droplets was reduced because of the presence of neighboring 
large "inactive" drops. The latter he assumed to be adiabatic 
because of their relative inefficiency in transferring heat to the 
condensing wall in terms of the surface area they covered. 

The ring-heat-source concept advanced and the experimental 
evidence presented in this investigation lead to very nearly the 
same conclusions advanced by Mikic, even though this investi
gation was based on consideration of a single droplet and Mikic's 
work was based on some assumptions about the droplet popula
tion as a whole. For example, a very small ring heat source 
(small droplet) placed on a surface of high lateral conductance 
(due either to a very high thermal conductivity or a relatively 
thick surface) would be expected to yield very little temperature 
variation in the condensing wall. This was predicted by the 
finite-element analysis. In Mikic's terminology, the "constric
tion resistance" for this individual droplet would be negligible. 
For many engineering situations this would certainly be the case. 
This investigation gives some basis for deciding when such an 
assumption would be justifiable by considering condensing-wall 
temperatures under a single droplet. Mikic also postulated that 
growth rates of neighboring "active" drops would be reduced by 
the presence of other active droplets. I t is evident that a num
ber of ring heat sources placed close together on a surface of high 
lateral conductance would interact to raise the mean surface 
temperature, particularly if the controlling resistance were on 
the cooled side. Thus a population of small droplets would give a 
higher heat-transfer rate. This analysis also indicates (as 
Mikic's did not) that the spacing between such active droplets 
could be affected by the conductance of the condensing wall. 
If, as postulated in this investigation, the heat-transfer rate 
into a droplet is proportional to its perimeter, then the net heat-
transfer rate per unit of condensing surface covered by the drop is 
inversely proportional to its diameter. Mikic's assumption 
that large droplets contribute little to the total heat transfer can 
then be justified on the basis tha t a droplet one order of magni
tude larger in diameter would transfer one order of magnitude less 
heat per unit of condensing surface covered. This analysis, 
again, gives some basis for deciding the degree of accuracy in
volved in Mikic's assumptions. 

In summary, the results of this investigation show clearly that 
the lateral conductance of the condensing wall is a very im
portant parameter in dropwise condensation. 

The nonuniformity of the wall temperature becomes a serious 
problem in the at tempt to define and measure a heat-transfer 
film coefficient for dropwise condensation. Use of such a film 
coefficient assumes the existence of a specific temperature dif
ference between the vapor and the wall surface. As postulated 
by Mikic, and as demonstrated experimentally in this investi
gation, appreciable temperature variations may occur on a con
densing wall. In the experimental work undertaken in this in
vestigation, for instance, conditions were chosen to obtain tem
perature variations on the surface of 10 deg F . About the best 
that can be done, therefore, is to talk about a mean temperature 
difference based on an average temperature over the condensing-
wall surface. If the population of droplets on the wall is not 
stationary, in the statistical sense, then the mean temperature 
must also be a time average. The problems in trying to mea
sure such a time and space average are formidable, and doubtless 
account for much of the spread reported in experimental drop-
wise-condensation film coefficients. 

Conclusion 
I t has been shown in this investigation that condensing-surface 

temperatures in dropwise condensation can be predicted by as
suming that all heat is transferred through a droplet by conduc
tion. The conduction analysis also indicated a very large heat-
transfer rate right around the droplet perimeter, and experimental 
observations have borne this out as well. The finite-element 
analysis used to predict temperatures did not consider elements 

small enough to allow accurate prediction of heat-transfer rates 
in the. sensitive droplet-perimeter area, but it did indicate rates 
of the right order of magnitude. The analysis clearly points to 
the importance of the condensing wall in diffusing heat laterally 
underneath and around a droplet, and gives a logical explanation 
for the interaction between growth rates for neighboring droplets 
which has been observed by other investigators. The action of 
the condensing wall is thus shown to be analogous to an extended 
surface in convective-cooling applications, in that it receives 
heat from a very narrow ring around the droplet perimeter and 
diffuses it laterally so that it can be transferred out of the con. 
densing wall into a cooling-fluid stream across a comparatively 
high thermal resistance. The presence of a neighboring droplet 
limits the condensing-surface area which can be used as a "fin" 
by a droplet, and thus reduces the growth rate of each. 
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D I S C U S S I O N 

D. G. Wilkins2 

The authors are to be congratulated on their interesting and 
innovative experimental technique. 

Issue is taken with the authors' analytical investigation and 
observations. First, the assumption of an adiabatic area sur
rounding the growing drop is not justified. In light of the re
sults of Welch and Westwater [29] for drop populations and the 
photographs of the authors which show large drops surrounded by 
numerous smaller drops, it would seem more reasonable to assume 
constant heat flux or even constant temperature over the area 
outside the growing drop. In fact, one would expect the tem
perature of the underside of the foil to be nearly the steam tem
perature for areas outside the edge of the drop. 

Secondly, the authors do not state the value of the steam-
condensation coefficient they employed. If they used the value 
0.04 recommended by Silver [19] instead of unity as found by 
recent workers [30], this would reduce the temperature gradients 
at the edge of a drop. 

Thirdly, the effect of having a low coefficient on the cooled side 
of the foil does not appear to have been recognized by the authors. 
With such a low (105 Btu/hr-ft2-deg F ) coefficient on the cooled 
side, lateral conduction is much more important than conduction 
through the foil for high-thermal-conductivity metals like copper. 
Thus it is not surprising that the authors found that the base of 
the drop can be considered isothermal except for large drops on 
thin foils, but it is not realistic for practical application of drop-
wise condensation. 

With such a low coefficient on the cooled side of the wall there 
is little advantage in having dropwise condensation. Typically, 
processes where dropwise condensation might be considered prac
tical, such as sea-water conversion, have cooled-side coefficients 
2 to 3 orders of magnitude higher. In such cases the base of 
drops large enough to be considered inactive cannot be taken as 
isothermal. The experimental results of Griffith and Lee [31] 
support this view. Griffith and Lee measured steam-side drop-
wise heat-transfer coefficients for specimens of varying thermal 
conductivity tha t were plated with 0.005 in. of gold in a hori
zontal position facing down. They reported a coefficient of 
10,000 Btu/hr-ft2-deg F for copper and 2000 Btu/hr-ft2-deg F 
for stainless steel. The authors predict tha t for a drop diameter 
°f 0.1 in. a wall thickness of 0.005 in. is sufficient to make the base 
°f the drop nearly isothermal. In a horizontal position facing 
down one would not expect drops much larger than 0.25 in. in 
diameter. Clearly, if the authors' model were valid, there should 
" e little variation in the observed steam-side coefficient of speci-

2 Research Assistant, Department of Chemical Engineering, Uni
versity of California, Berkeley, Calif. Assoc. Mem. ASME. 

mens with 0.005 in. of gold plate. The authors' analytical model 
does not appear to be valid for practical applications of dropwise 
condensation, and the base of the inactive drops cannot be con
sidered isothermal. Further evidence for the magnitude of the 
dependence of the steam-side heat-transfer coefficient upon the 
condensing-wall thickness is contained in the PhD dissertation 
of Wilkins [32]. 

Authors' Closure 
The authors wish to thank Mr. Wilkins for his thoughtful 

comments. There appear to be several items which need clari
fication, and a few on which there appears to be some disagree
ment between the authors and Mr. Wilkins. 

First, with regard to the condensation events outside the drop
let: I t is still the authors' contention tha t the area immediately 
adjacent to any droplet is very nearly, if not truly, adiabatic. 
Assumptions of either constant heat flux (without condensation 
occurring) or constant temperature would appear to be arbitrary 
assumptions without basis in physical reasoning. The question 
which needs to be resolved is the extent of the adiabatic area. 
The relationship among the extent of the adiabatic area, the 
amount of subcooling necessary to cause droplet nucleation, and 
the resulting droplet spacing has been discussed in the paper and 
will not be repeated here. I t will simply be noted that the small 
amount of subcooling required for nucleation of a steam droplet 
together with the rapid temperature drop expected in a practical 
condensing surface under the adiabatic area would lead to the 
conclusion tha t steam droplets should grow very close together. 
As Mr. Wilkins has correctly noted, this is what is observed in 
practice. I t is also exactly what the authors would expect, 
based on their hypothesized model. 

In determining which value of the steam condensation co
efficient to use in the analysis, the authors consulted a number of 
references, including the paper of Navabian and Bromley [30], 
This paper was of particular interest because of the determination 
of the steam condensation coefficient from condensing vapor 
rather than evaporating liquid. For several reasons, however, 
see Hurst [23], it was decided initially to use a value of 0.045 as 
recommended by Knacke and Stranski [33]. When results were 
obtained it was immediately apparent tha t even order-of-mag-
nitude changes in the value of the steam condensation coefficient 
would not have any appreciable effect on the results for the set of 
conditions under study. All of the droplet surface temperatures 
(except for the "average" corner temperature predicted right 
at the droplet perimeter) were predicted to be within 0.003 deg F 
of the vapor saturation temperature. The heat-transfer rates 
were controlled by the conduction and cooled-side-convection 
heat-transfer restrictions for this case. Consequently i t was not 
felt to be necessary to redo the analysis with different condensa
tion-coefficient values. Of course, for cases where extremely 
high thermal conductivities in the condensate and condensing 
wall were encountered along with a very high heat-transfer co
efficient on the cooled side of the wall, the value of the steam con
densation coefficient might become of sufficient importance to 
warrant further study. 

The third comment of Mr. Wilkins is puzzling, particularly in 
view of the fact that the central idea of this work was that the 
determination of the nonuniform condensing-wall temperatures is 
a system problem involving not only the vapor and droplet but 
also the properties of the condensing wall and the cooling mech
anism. In designing the experimental apparatus it was clearly 
necessary to consider all of these in the at tempt to obtain a surface 
with large temperature gradients on it. For a much higher 
cooling rate the condensing wall could have been made thicker 
without making it effectively isothermal. The use of a cooling 
coefficient of 105 Btu/hr-ft2-deg F was dictated by the necessity 
of using air to have a cooling medium transparent to infrared 
radiation. 

The authors agree with Mr. Wilkins tha t the use of dropwise 
condensation is certainly not called for in practice if the heat-
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photographs of the authors which show large drops surrounded by 
numerous smaller drops, it would seem more reasonable to assume 
constant heat flux or even constant temperature over the area 
outside the growing drop. In fact, one would expect the tem
perature of the underside of the foil to be nearly the steam tem
perature for areas outside the edge of the drop. 

Secondly, the authors do not state the value of the steam-
condensation coefficient they employed. If they used the value 
0.04 recommended by Silver [19] instead of unity as found by 
recent workers [30], this would reduce the temperature gradients 
at the edge of a drop. 

Thirdly, the effect of having a low coefficient on the cooled side 
of the foil does not appear to have been recognized by the authors. 
With such a low (105 Btu/hr-ft2-deg F ) coefficient on the cooled 
side, lateral conduction is much more important than conduction 
through the foil for high-thermal-conductivity metals like copper. 
Thus it is not surprising that the authors found that the base of 
the drop can be considered isothermal except for large drops on 
thin foils, but it is not realistic for practical application of drop-
wise condensation. 

With such a low coefficient on the cooled side of the wall there 
is little advantage in having dropwise condensation. Typically, 
processes where dropwise condensation might be considered prac
tical, such as sea-water conversion, have cooled-side coefficients 
2 to 3 orders of magnitude higher. In such cases the base of 
drops large enough to be considered inactive cannot be taken as 
isothermal. The experimental results of Griffith and Lee [31] 
support this view. Griffith and Lee measured steam-side drop-
wise heat-transfer coefficients for specimens of varying thermal 
conductivity tha t were plated with 0.005 in. of gold in a hori
zontal position facing down. They reported a coefficient of 
10,000 Btu/hr-ft2-deg F for copper and 2000 Btu/hr-ft2-deg F 
for stainless steel. The authors predict tha t for a drop diameter 
°f 0.1 in. a wall thickness of 0.005 in. is sufficient to make the base 
°f the drop nearly isothermal. In a horizontal position facing 
down one would not expect drops much larger than 0.25 in. in 
diameter. Clearly, if the authors' model were valid, there should 
" e little variation in the observed steam-side coefficient of speci-

2 Research Assistant, Department of Chemical Engineering, Uni
versity of California, Berkeley, Calif. Assoc. Mem. ASME. 

mens with 0.005 in. of gold plate. The authors' analytical model 
does not appear to be valid for practical applications of dropwise 
condensation, and the base of the inactive drops cannot be con
sidered isothermal. Further evidence for the magnitude of the 
dependence of the steam-side heat-transfer coefficient upon the 
condensing-wall thickness is contained in the PhD dissertation 
of Wilkins [32]. 

Authors' Closure 
The authors wish to thank Mr. Wilkins for his thoughtful 

comments. There appear to be several items which need clari
fication, and a few on which there appears to be some disagree
ment between the authors and Mr. Wilkins. 

First, with regard to the condensation events outside the drop
let: I t is still the authors' contention tha t the area immediately 
adjacent to any droplet is very nearly, if not truly, adiabatic. 
Assumptions of either constant heat flux (without condensation 
occurring) or constant temperature would appear to be arbitrary 
assumptions without basis in physical reasoning. The question 
which needs to be resolved is the extent of the adiabatic area. 
The relationship among the extent of the adiabatic area, the 
amount of subcooling necessary to cause droplet nucleation, and 
the resulting droplet spacing has been discussed in the paper and 
will not be repeated here. I t will simply be noted that the small 
amount of subcooling required for nucleation of a steam droplet 
together with the rapid temperature drop expected in a practical 
condensing surface under the adiabatic area would lead to the 
conclusion tha t steam droplets should grow very close together. 
As Mr. Wilkins has correctly noted, this is what is observed in 
practice. I t is also exactly what the authors would expect, 
based on their hypothesized model. 

In determining which value of the steam condensation co
efficient to use in the analysis, the authors consulted a number of 
references, including the paper of Navabian and Bromley [30], 
This paper was of particular interest because of the determination 
of the steam condensation coefficient from condensing vapor 
rather than evaporating liquid. For several reasons, however, 
see Hurst [23], it was decided initially to use a value of 0.045 as 
recommended by Knacke and Stranski [33]. When results were 
obtained it was immediately apparent tha t even order-of-mag-
nitude changes in the value of the steam condensation coefficient 
would not have any appreciable effect on the results for the set of 
conditions under study. All of the droplet surface temperatures 
(except for the "average" corner temperature predicted right 
at the droplet perimeter) were predicted to be within 0.003 deg F 
of the vapor saturation temperature. The heat-transfer rates 
were controlled by the conduction and cooled-side-convection 
heat-transfer restrictions for this case. Consequently i t was not 
felt to be necessary to redo the analysis with different condensa
tion-coefficient values. Of course, for cases where extremely 
high thermal conductivities in the condensate and condensing 
wall were encountered along with a very high heat-transfer co
efficient on the cooled side of the wall, the value of the steam con
densation coefficient might become of sufficient importance to 
warrant further study. 

The third comment of Mr. Wilkins is puzzling, particularly in 
view of the fact that the central idea of this work was that the 
determination of the nonuniform condensing-wall temperatures is 
a system problem involving not only the vapor and droplet but 
also the properties of the condensing wall and the cooling mech
anism. In designing the experimental apparatus it was clearly 
necessary to consider all of these in the at tempt to obtain a surface 
with large temperature gradients on it. For a much higher 
cooling rate the condensing wall could have been made thicker 
without making it effectively isothermal. The use of a cooling 
coefficient of 105 Btu/hr-ft2-deg F was dictated by the necessity 
of using air to have a cooling medium transparent to infrared 
radiation. 

The authors agree with Mr. Wilkins tha t the use of dropwise 
condensation is certainly not called for in practice if the heat-
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DISCUSSION 

D. G. Wilkins2 
The authors are to be congratulated on their interesting and 

innovative experimental technique. 
Issue is taken with the authors' analytical investigation and 

observations. First, the assumption of an adiabatic area sUr
roullding the growing drop is not justified. In light of the re
sultH of Welch and Westwater [29] for drop populations and the 
photographs of the authors which show large drops surrounded by 
numerous smaller drops, it would seem more reasonable to assum'e 
eonstant heat flux or even constant temperature over the area 
oUlside the growing drop. In fact, one would expect the tem
perature of the underside of the foil to be nearly the steam tem
perature for areas outside the edge of the drop. 

Secondly, the authors do not state the value of the steam
condensation coefficient they employed. If they used the value 
0.04 recommended by Silver [19] instead of unity as found by 
recent. workers [30], this would reduce the temperature gradients 
at the edge of a drop. 

Thirdly, the effect of having a low coefficient on the cooled side 
of the foil does not appear to have been recognized by the authors. 
WIth such a low (10.5 Btu/hr-ft2-deg F) coefficient on the cooled 
sicle, lateral conduction is much more important than conduction 
through the foil for high-thermal-conductivity metals like copper. 
Thus it is not surprising that the authors found that the base of 
t.h~ drop can be considered isothermal except for large drops on 
t~lll foils, but it is not realistic for practical application of drop
WIse condensation. 

With such a low coefficient on the cooled side of the wall there 
is little advantage in having drop wise condensation. Typically, 
~l'oeesses where dropwise condensation might be considered prac
tIcal, such as sea-water conversion, have cooled-side coefficients 
2 to 3 orders of magnitude higher. In such cases the base of 
?l'OPS large enough to be considered inactive cannot be taken as 
Isot.hermal. The experimental results of Griffith and Lee [31) 
S\~pport this view. Griffith and Lee measured steam-side drop
WIse heat-transfer coefficients for specimens of varying thermal 
conductivity that were plated with 0.005 in. of gold in a hori
zontD,1 position facing down. They reported a coefficient of 
10,000 Btu/hr-ft2-deg F for copper and 2000 Btu/hr-W-deg F 
for st.ainless steel. The authors predict that for a drop diameter 
of 0.1 in. a wall thickness of 0.005 in. is sufficient to make the base 
of the drop nearly isothermal. In a horizontal position facing 
d~wl1 one would not expect drops much larger than 0.25 in. in 
dlarneter. Clearly, if the authors' model were valid there should 
be little variation in the observed steam-side coeffi~ient of speci-
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mens with 0.005 in. of gold plate. The authors' analytical model 
does not a.ppear to be valid for practical applications of drop wise 
condensatlOn, and the base of the inactive drops cannot be con
sidered isothermal. Further evidence for the magnitude of the 
dependence of the steam-side heat-transfer coefficient upon the 
condensing-wall thickness is contained in the PhD dissertation 
of Wilkins [32]. 

Authors' Closure 
The authors wish to thank Mr. Wilkins for his thoughtful 

comments. There appear to be several items which need clari
fication, and a few on which there appears to be some disagree
ment between the authors and Mr. Wilkins. 

First, with regard to the condensation events outside the drop
let.: It is still the authors' contention that the area immediately 
adjacent to any droplet is very nearly, if not truly, adiabatic. 
Assumptions of either constant heat flux (without condensation 
occurring) or constant temperature would appear to be arbitrary 
assumptions without basis in physical reasoning. The question 
which needs to be resolved is the extent of the adiabatic area. 
The relationship among the extent of the adiabatic area the 
amount of sub cooling necessary to cause droplet nucleation' and 
the resulting droplet spacing has been discussed in the pape;' and 
will not be repeated here. It will simply be noted that the small 
amount of sub cooling required for nucleation of a steam droplet 
together with the rapid temperature drop expected in a practical 
condensing surface under the adiabatic area would lead to the 
conclusion that steam droplets should grow very close together. 
As Mr. Wilkins has correctly noted, this is what is observed in 
practice. It is also exactly what the authors would expect, 
based on their hypothesized model. 

In determining which value of the steam condensation co
efficient to use in the analysis, the authors consulted a number of 
references, including the paper of N avabian and Bromley [30]. 
This paper was of particular interest because of the determination 
of the steam condensation coefficient from condensing vapor 
rather than evaporating liquid. For several reasons however 
see Hurst [23], it was decided initially to use a value ~f 0.045 a~ 
recommended by Knacke and Stranski [33). When results were 
obtained it was immediately apparent that even order-of-mag
nitude changes in the value of the steam condensation coefficient 
would not have any appreciable effect on the results for the set of 
conditions under study. All of the droplet surface temperatures 
(except for the "average" corner temperature predicted right 
at the droplet perimeter) were predicted to be within 0.003 deg F 
of the vapor saturation temperature. The heat-transfer rates 
were controlled by the conduction and cooled-side-convection 
heat-transfer restrictions for this case. Consequently it was not 
felt to be necessary to redo the analysis with different condensa
tion-coefficient values. Of course, for cases where extremely 
high thermal conductivities in the condensate and condensing 
wall were encountered along with a very high heat-transfer co
efficient on the cooled side of the wall, the value of the steam con
densation coefficient might become of sufficient importance to 
warrant further study. 

The third comment of Mr. Wilkins is puzzling, particularly in 
view of the fact that the central idea of this work was that the 
determination of the nonuniform condensing-wall temperatures is 
a system problem involving not only the vapor and droplet but 
also the properties of the condensing wall and the cooling mech
anism. In designing the experimental apparatus it was clearly 
necessary to consider all of these in the attempt to obtain a surface 
with large temperature gradients on it. For a much higher 
cooling rate the condensing wall could have been made thicker 
without making it effectively isothermal. The use of a cooling 
coefficient of 105 Btu/hr-ft2-deg F was dictated by the necessity 
of using air to have a cooling medium transparent to infrared 
radiation. 

The authors agree with Mr. Wilkins that the use of dropwise 
condensation is certainly not called for in practice if the heat-
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transfer rate is limited by a relatively low heat-transfer coefficient 
in some other part of the heat flow path. The parameters used 
in the analysis were chosen to model the events being observed 
experimentally, which, in turn, were deliberately chosen to learn 
something about the mechanism of dropwise condensation. 

The authors feel that Mr. Wilkins has taken the statement 
about a O.005-in. condensing-wall thickness being sufficient to 
cause the droplet base to become effectively isothermal out of 
context. That statement applied only to the set of conditions 
being studied, and in particular to the use of a cooled-side heat
transfer coefficient of 105 Btu/hr-ft2-deg F for steam condensing 
at atmospheric pressure on a copper wall. It is impossible to 
take that piece of information and conclude anything from the 
work of Griffith and Lee [31], as their conditions on the cooled 
side of the O.OOS-in-thick gold plate were vastly different. The 
authors concluded that a droplet acts much like a ring source of 
heat with a diameter equal to the droplet diameter so far as the 
condensing surface is concerned. Thus it is clear that only a 
complete conduction and convection analysis of the condensing 
wall and its coolant could determine whether or not a wall could 
be considered isothermal under a droplet. In many cases of 
engineering significance the condensing walls are thick enough 
and the cooling rates low enough that areas under the droplets 
will turn out to be nearly isothermal, but it is not too difficult to 
specify a situation where the condensing wall is far from isother-
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mal. Finally, the authors' model does not depend in any way 
on an assumption of constant temperature under the droplet. 
Conclusions concerning wall temperature gradients are of interest 
primarily in trying to assess the validity of the static droplet 
conduction studies of several previous investigators, and the 
information given was presented for that reason. 

The authors and jVIr. Wilkins appear to have a considerable 
amount of common ground in believing that conductivity within 
a condensing wall is of considerable importance in the study of 
dropwise condensation. The authors look forward to reading 
Mr. Wilkins' thesis and/or paper when it becomes available. 
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The Influence of Thermocapillary Flow on 
Heat Transfer in Film Condensation 
The influence of fluid flow—induced by surface-tension forces—on heat transfer 
through a condensate film broken by non-wetting strips was considered. The film was 
modeled as a two-dimensional layer on an isothermal, vertical flat surface; the layer has a 
flat midsection with circular arcs at the edges. The solution was obtained by a finite-
difference technique for several values of the Marangoni number (Ntn) which provides 
a relative measure of the surface-tension forces and of the Biot number (Bi) which pro
vides a relative measure of the heat transfer at the liquid-vapor interface. The range 
of parameters covered by this work transcends the limits of most practical interest for 
water. The results show that internal thermocapillary circulation causes modest in
creases in heat transfer. It is concluded that thermocapillary flow might be an im
portant factor in determining the geometry of channeled condensate films. 

Introduction 

T, HIS WORK is an attempt to show the effect of 
thermocapillary flows on the heat transfer in film condensation. 
These flows are induced by breaking the condensate layer to 
cause a nonuniform surface-temperature distribution. 

Flows induced by nonuniform surface tension at a liquid-
vapor interface were first reported by C. G. M. Marangoni in 
1871. Surface tension is a thermodynamic property of a liquid 
dependent only upon its temperature and composition. Hence 
variations in either property can influence the transport of heat, 
mass, and momentum near an interface, especially in small-scale 
systems [ l ] . 1 Surface-tension-induced flows are grouped collec
tively under the "Marangoni effect." Thermocapillary flows are 
those induced by thermal gradients; these have been considered 
by various authors [1-6]. 

Model Description 
The model is illustrated in Figs. 1 and 2. I t is two-dimensional 

with symmetry about the y axis. The condensate layer is con
sidered to be running down a vertical flat surface between parallel 
strips of a non-wetting material. The shape of the model was 
arbitrarily determined to facilitate the writing of linearized finite-
difference equations. No consideration was made of free sur
faces determined from the interaction between surface tension 
and pressure. The model is quasi-steady, inertial terms in the 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL OP HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division December 29, 1971. Paper 
No. 72-HT-H. 
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Fig. 1 Hypothetical scheme for channeled film condensation 

momentum equation are neglected, and constant properties and 
parameters are assumed. For a complete discussion of the model
ing process, see [8]. 

The solution domain is the interior of the condensate layer de
picted in Fig. 2. The physics of the energy and momentum 
transport within this domain, subject to the above assumptions, 
are specified by the following dimensionless governing equations 
[4, 6-8]. All symbols are explained in the Nomenclature. 

V'W = 0 (1) 

V20 = 
by' bx' bx' by' 

(2) 

(3) 

The dimensionless boundary conditions are: 

at boundary I 
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BXlS Of 
symmetry 

Saturated vapor 

Boundary II 

Condensnte layer 

Boundary 
I 

> > / / / V / / / //"///// 
Fig. 2 Model for solution domain 

0, $ = 0, " ~ = 0 
on 

at boundary I I 

dd 

dn 
- = - B i ( 0 - 1), 4/ = 0 

(4) 

(5) 

1 d ^ T d0 
«' + - — = -Nm—-

R dn' ds' 

at boundary I I I 

ore 
- = 0, yp = 0, w' = 0 (6) 

Method of Solution 
Numerical Procedures. Governing equations ( l ) - (3) with bound

ary conditions (4)-(6) were expressed as linear finite-difference 
equations written at each node of a finite-difference grid net
work. The radius and angle distributions of the network were 
selected to crowd nodal points in the region of greatest change 
of the problem variables. 

The problem, as formulated, is not, of course, completely 
linear. There are coupling and nonlinearity between the prob-

0.6 

0A 

p 250 100 
50 20 10 

Km=1000 

Bl = 1 

" 

60 7S 90 
# , decrees 

Fig. 3 Dimensionless surface temperature for several values of Bi; b = Q 

lem variables in the governing equations and boundary condi-
tions. This was handled by breaking the difference equations 
into two separate linear sets and solving iteratively between the 
two until the change between iterations in the heat flux con
ducted through the liquid-vapor interface was less than 1 percent. 

Range of Parameters. The two parameters which completely 
specify the solution for a given condensate-layer geometry are 
Bi and Nm. Their range covered in this work determined from 
consideration of a vertical-flat-plate analysis is 1 < Bi < 250 
and 0 < Nm < 5000. 

For Bi > 1, the conduction resistance for water films is greater 
than or equal to 20 percent (for small 6) and 50 percent (for largfr 
b) of the total resistance [8]. For lower values of Bi the inter-
facial (liquid-vapor) resistance becomes the controlling resistance, 
and the overall heat-transfer coefficient is not significantly 
affected by strong thermocapillary circulation within the liquid. 
In the above, the term "conduction resistance" refers to the 
thermal resistance from the surface of the condensate film at the 
liquid-vapor interface through the layer to the condensing sur
face. For a complete discussion of the orders of magnitude of 
h and o, which determine the magnitudes of the interfacial and 
conduction resistances respectively in the condensation of water, 
see references [8-13]. 

•Nomenclature-

6 = 

Bi = 

Cp ~ 

h = 

k = 

n, s = 

Nm = 

V = 

Pr = 
1 = 

<?cond ~ 

radius of curvature of the 
end of the broken, con
densate film layer, and 
thickness of the layer 

half-width of region of con
stant thickness a 

ha/k, Biot number 
specific heat of the con

densate liquid 
heat-transfer coefficient at 

the liquid-vapor interface 
thermal conductivity of the 

condensing surface 
curvilinear coordinate sys

tem at the boundary 
-(Tsat - T0)afi/fia, Mar-

angoni number 
pressure 
IMCp/k, Prandtl number 
heat flux 
pure conduction heat flux 

(Nm = 0) 

polar coordinate system 

= dimensionless coordinates 

R = 

Re = 
t = 

T = 
T„ = 

J- 8a t = 

radius of curvature of the 
liquid-vapor interface 

p|V|a/yU) Reynolds number 
time 
temperature 
temperature of the condens

ing surface 
saturation temperature of 

the vapor 
velocity vector 
V o / a , dimensionless ve

locity vector 
velocity components in the 

various coordinate direc
tions 

dimensionless velocity com
ponents 

cartesian coordinate system 
k/pcp, thermal diffusivity of 

the liquid 

CO 

w' 

T„, 

= dcr/dT, derivative of sur
face tension with respect 
to temperature 

= surface tension 
= absolute viscosity of the 

condensate liquid 
= V X V, vorticity 
= coa2/a, dimensionless vor

ticity 
= density of the condensnte 

liquid 
= shear stress on the liquid-

vapor surface 
= dimensionless stream func

tion, Vx = dtp/by' and 
Vv' = -d\p/dx' 

= , dimensionless 
Tsat — To 

temperature 
= dimensionless surface tem

perature 
= oV, dimensionless vectof 

operator 
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Fig. 4 Flow field inside condensate layer, fa = 0; Bi = 2 0 , Nm = 5 0 0 0 
Fig. 6 Augmentation over conduction solution, b = 0 
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Fig. 5 Temperature field inside condensate layer, b = 0; Bi = 2 0 

Fig. 7 Flow field inside condensate layer, b = 1.25ay Bi 
5 0 0 

2 0 , Nm 

The upper limit on Nm ( = 5000) was determined by setting 
an upper bound on [a(TBat — To)] for cases of practical interest. 

Results and Discussion 
Case I. 6 = 0 (layer of semicircular cross section). Nonuni

form temperature distributions on the liquid-vapor surface, 
which are the indirect cause of thermocapillary flows, are a conse
quence of the presence of a finite heat-transfer coefficient h at 
the interface. The results shown in Fig. 3 illustrate this point. 

Figs. 4 and 5 illustrate the case where the thermoeapillarity is 
strong. Fig. 4 is a plot of the stream function ip (i.e., the flow 
field) for Bi = 20 and Nm = 5000. The nondimensional 
thermocapillary driving force Nm(d0/ds ' ) pulls the liquid down 
toward the corner, resulting in the flow pattern observed. Fig. 
5illustrates the temperature field within the same film; the dotted 
lines are the conduction solution (i.e., Nm = 0). In general the 
thermocapillary flow acts to decrease temperatures from the 
conduction solution at any given point except near the corner, 
"here the opposite occurs. 

The augmentation, defined as (q — qaand)/<lc<md, was employed 
to measure the increase in heat transfer due to thermoeapillarity. 
It measures the increase (due to thermocapillary flow) in heat 
flux, or overall heat-transfer coefficient, over the conduction flux 
with no thermocapillary flow. The flux through the liquid-
Vapor boundary integrated over that surface is represented by 
?• A cross-plot of the augmentation as a function of Bi and Nm 
's provided in Fig. 6. For the range of Nm explored in this 
Work, the maximum augmentation occurs for 10 < Bi < 20. 
"or small Bi, it appears that since the rate of increase of the 
augmentation decreases with increasing Nm, either the inter-
'acial resistance is controlling or the Marangoni effect is self-
limiting. 

Case II. 6 = 1.25 a. A run was made for b — 1.25a (see Fig. 
2), Bi = 20, and Nm = 500. I t was thought that extending the 
'ayer (i.e., making 6 > 0) would lessen constrictions on the flow 

caused by the tight loop around which it was forced to circulate 
when 6 = 0. The flow field for the given values of 6, Bi, and 
Nm is illustrated in Fig. 7. The flow around the corner is about 
twice as great as for the nonextended case (when 6 = 0). How
ever, the surface temperatures on the top of the layers are about 
the same for the two cases. The augmentation decreases slightly 
in the extended case. The flow in the extended parts is weak and 
does not contribute much to the augmentation, although the flow 
in the region |.-r| > 6 is approximately doubled. I t is believed 
that the augmentation would not be significant for wide thin 
layers. 

Case III. 6 = 0 (finite condensing-surface resistance). This 
case was explored by assuming the condensing surface to be of 
thickness a and thermal conductivity 10 Btu/hr-ft-deg F . A 
constant temperature was impressed on the bottom of the sur
face, and the sides at a; = ± o were considered to be insulated. 
The conduction-solution temperature field is shown in Fig. 8 
for Bi = 20. Setting Nm = 500, the augmentation decreased 
slightly from the value in the previous case. Since k, = 10 
Btu/hr-ft-deg F represents a lower limit on any metal-condensmg-
surface thermal conductivity, other surfaces will have less effect 
on the heat transfer. 

Summary and Conclusions 
The Effect of Thermocapillary Flows on Heat Transfer. The maxi

mum increase in heat transfer due to thermoeapillarity is found 
to be 83 percent (for Bi = 20 and Nm = 5000). For Bi = 250 
and N m = 5000 the augmentation is only 32 percent. I t ap
pears tha t thermoeapillarity is an important mechanism in heat 
transfer only for cases with large thickness a and small heat-
transfer coefficient h. However, these conditions are the opposite 
of what is desired, and their occurrence within a total system 
would be in regions which do not contribute much to the overall 
heat transfer. Also, the results for the augmentation are calcu
lated for the layer of half width a. Extension of the layer re-
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Fig. 8 Conduction temperature field with finite condensing-surface re
sistance, b = 0; ks = 10 Btu/hr-ft-deg F, Bi = 2 0 

duces the relative effect of the thermocapillary flows, since all of 
the action occurs at the ends. Therefore, it appears that within 
the restriction of the model formulation, thermocapillary flows 
cause at best modest increases in the heat transfer in film con
densation. 

Influence of Modeling Approximations and Assumptions on the Re
sults. After the fact, it appears that inclusion of the inertia terms 
in the problem model would have the net effect of decreasing the 
augmentation of the heat transfer due to thermocapillary flow. 
Along a given streamline, the magnitude of the velocity changes 
drastically; adding inertia would have the effect of reducing the 
maximum velocity, because the energy associated with accelerat
ing the fluid has not been accounted for, and the effect of raising 
the minimum velocity, because it would not be slowed as much 
by viscous friction. Lorenz [6] found in dropwise condensation 
heat transfer (Bi = 100 and Nm = 450 with Pr = 1) that the 
inclusion of inertia in the problem model slightly reduced the 
surface velocity. 

I t can be shown that the Reynolds number based on the 
thickness a is |V ' | /Pr . At atmospheric pressure for saturated 
water Pr = 2; Pr increases as the pressure decreases. Therefore, 
for low-pressure systems, or away from the corner where veloci
ties are small, or for small Nm, the Reynolds number is small, 

and the influence of the inertia terms with respect to the viscous 
terms, can be neglected. 

The model geometry was assumed for ease in writing the finite, 
difference equations. No account was made of the effect of the 
thermocapillary flows on the shape of the condensate layer,' 
The very large radial accelerations due to the tangential velocity 
found at the inter/facial surface would require unrealistically large 
pressure gradients to balance them. One would expect that a I 
large radius of curvature at the free surface would be caused by 
thermocapillary flows to reduce pressure gradients there. 

Summary. For the model considered it appears tha t the direct 
effect of thermocapillary flows on augmentation of the heat 
transfer in film condensation is modest. Thermocapillary flows 
might be important in determining condensate-layer geometries 
due to the relatively large velocities induced in the broken con. 
densate layer, and thus indirectly affecting the heat transfer. 
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Specular Reflectors for Prescribed 
Disturbed Radiant Heating from a 
Point Energy Source 
This paper presents a mathematical model for designing a reflector shape which will 
produce a prescribed rotationally symmetric energy distribution on a plane workpiece 
using a single point energy source. The model considers spectral, directional, and 
polarizing effects. The necessary equations are developed and their solutions de
scribed. A reflector is designed to uniformly heat a 6-in-dia circle using a 200-w 
compact mercury-arc lamp. The validity of the model is demonstrated by constructing 
the designed reflector and experimentally confirming that the desired heat-flux distribu
tion is achieved. It is quantitatively shown that the minor differences between the desired 
flux distribution and the actual distribution are due primarily to the finite source size 
and that a more precise distribution could be obtained by modeling the source as four 
point sources. 

RA 

Introduction 

IADIANT heating systems consisting of a single com
pact energy source and a reflector are used for a variety of appli
cations including manufacturing in the electronics industry [l],1 

thermal simulation [2], and photolysis research [3].. Most of 
the systems use reflectors of either elliptic or parabolic cross sec
tion with the source at a focus. The elliptic reflectors concen
trate the energy from the source onto a workpiece located at the 
second focus, while the parabolic reflectors produce a collimated 
beam of nonuniform intensity [4]. The goal of the present 
study was to develop techniques for designing and constructing a 
reflector system which would produce a prescribed heat-flux dis
tribution on a workpiece, the heat-flux distribution of greatest 
interest being a uniform distribution over a relatively large area. 

A previous paper [4] presented a mathematical model de
scribing the radiant heating system and used the model to predict 
the heat-flux distribution for a known reflector shape. That 
study demonstrated that reflectors of conic section will not pro
duce a uniform heat flux. The present study uses the same 
mathematical model to design a reflector which will produce a 
prescribed heat-flux distribution.2 

The following sections of this paper discuss the assumptions of 
the analysis, develop the equations describing the system and 
discuss their solution, present the design of a reflector to produce 

' Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
°f THE AMEBICAN SOCIETY OP MECHANICAL ENGINEEBS. Manuscript 
deceived by the Heat Transfer Division May 5, 1972. Paper No. 
72-WA/HT-l. 

a prescribed distribution using a specific mercury-arc lamp, 
discuss the construction of the reflector, and present the experi
mental heat-flux distribution of the reflector system. A com
parison is made between experimental and theoretical findings 
and the differences are discussed. A second example is presented 
to illustrate how the present design procedure is coupled with the 
conduction heat transfer occurring within the workpiece. 

Assumptions 
The present work treats a radiant heating system consisting 

of a point light source, a reflector^ and a plane workpiece. The 
system, illustrated in Fig. 1, is restricted to rotational symmetry 
about a central axis. Because of the simple geometry many of 
the restrictive assumptions commonly made in radiant-heat-
transfer calculations are not required. Spectral, directional, arid 
polarizing effects [5] are included in the model. 

The assumptions of the analysis are (a) a spectral reflector, (6) 
a nonparticipating gas, (c) a point energy source, (d) negligible 
emission from the reflector, surroundings, and workpiece, and (e) 
energy transfer only along those paths illustrated in Fig. 1. 

No source exactly satisfies assumption (c), but experimental 
measurements verify that many do approximate a point source. 
The degree to which the source used in this experiment approxi
mates a point is discussed in depth later in the paper. 

Assumption (d) implies that the only important radiator of 

2 A concurrent analytical study by Horton and McDerrhit [14 ] de
scribes the design of a reflector for use with a nonuniform collimated 
source. The authors do not treat spectral, directional, or polarizing 
effects. In their conclusion they correctly note that by following the 
outline of their work one could design reflectors for use with nonuni
form point sources. The present work is an analytic and experimen
tal study of this case which includes the above effects. 
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Fig. 1 System geometry 

energy in the system is the source. In verifying the validity of 
this assumption one must consider the temperature, area, and 
emittance of each surface. The emission from the reflector can 
be neglected if the temperature of the reflector is sufficiently low. 
Reflectors normally are operated at low temperatures (often by 
water cooling) to maintain surface quality. The emission from 
room-temperature surroundings should also be small; however, 
the emission from the workpiece can be important if its tempera
ture and emittance are large. In the present experiments the 
workpiece is a water-cooled calorimeter, and hence its emission is 
low. 

Assumption (e) requires that the components of power re
flected from the workpiece, <j>s and <f>i (Fig. 1), not strike the re
flector. This assumption must be verified if the part is a good 
specular reflector. For parts which are good diffuse absorbers 
(such as the calorimeter used in the present study) the assump
tion is valid. 

Derivation of Equations 
Energy Equation. The objective is to design a reflector which 

will produce a radially symmetric heat flux of Ew(z), where the 
subscript w indicates workpiece and the variable z indicates that 
this flux distribution may be a function of the radial coordinate 
(Fig. 1), Note that Ew(z) is the radiant flux absorbed by the 
workpiece (not the incident radiant energy), and thus the reflector 
shape will depend on the surface characteristics of the work-
piece. No restrictions are placed on the spectral distribution or 
state of polarization of the absorbed flux Ew{z), since we are only 
concerned with obtaining a specified amount of absorbed thermal 
energy. 

At each point, z on the workpiece there will be two contribu
tions to Ew(z): the flux E6 which is reflected by the reflector and 
then absorbed by the workpiece and the flux Ee which is directly 
absorbed by the workpiece. Thus 

EM) = Eb+E« (1) 

A differential equation describing the energy transfer in the 
system can be derived by tracing polarized spectral power along 
the two paths from the source to the workpiece using the pre
viously discussed assumptions. These differential powers are 
then integrated over frequency and summed over components of 
polarization to obtain the total fluxes Ea and Ee. Substitution 
into equation (1) yields the energy equation as a first-order ordi
nary differential equation. The details of the derivation are 
presented in [4]. 

dA 

dd. 

£ f 
Jo 

pr(v, * , j)otw(.v, y, j)h(d, j)dv 

SOURCE' 

Fig. 2 Differential geometry for reflector 

In the energy equation (02), j is the component of polarization, 
v is frequency, pr(v, S?, j) is the spectral specular reflectance of 
the reflector for the j component of polarized power and ty is the 
angle of incidence of the incoming ray, aw(v, y, j) is the spectral 
directional absorptance of the workpiece and y is the angle of 
incidence of the incoming ray, Iv(6, j) is the polarized spectral 
radiant intensity of the ideal point source in the direction 6, and 
/, d, and z are geometrical distances defined in Fig. 1. The vari
able A is the area of the workpiece 

A = 7T22 (3) 

and 6, is the solid angle generated by rotating the plane angle 0 
about the x axis 

6, = 2TT(1 - cos 6») (4) 

Geometrical Equations. The energy equation (G2) involves the 
independent variable 0, and six dependent variables A, ty, 6, y, 
j3, and z. In addition there are two other dependent variables 
of direct concern, x and y, which specify the reflector shape. 
Thus seven additional equations must be determined from the 
geometry of the reflector system; one of these equations is a dif
ferential equation, the remainder are algebraic equations. 

The differential equation is first derived. From Fig. 2 

dy_ 

du 
= cos (d - * ) 

dw 

du 
cos \fr 

dd = dw/b 

y/b = sin 8 

(6) 

(7) 

From equations (5)-(8) and the trigonometric identity for the 
cosine of the difference of two angles 

= j/(oot 6 + tan ty) (9) 

Using equation (4), equation (9) is reformulated with 6S as the 
independent variable 

dy_ 

dd. = V 
(cot 6 + tan ^ ) 

2x sin 6 
(i/10) 

otw(v, 0, j)I,(]3, j)du 

The variable 6S has been selected as the appropriate indepen
dent variable for the differential equations since for a source with 
uniform intensity equal differential solid angles dd, will contain 

(G2)3 

{I - d)[(l - d)* + z*} + Ew{z) 

1 Lettered equations are used in the final model. 
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equal amounts of power; thus uniform accuracy in the power dis
tribution will be achieved during the numerical integration of the 
differential equations. 

The six algebraic equations will now be derived. Rearrange
ment of equations (4) and (3) yields the following equations: 

From Fig- 1 

0 = arccos I 1 — ~ I 

2 = (A/7T)1 / ! 

x = d — y cot 

0 < 8 < 7T ( A l l ) 

(B12) 

(C13) 

Applying the law of cosines to the triangle with sides a, b, and c 
and solving for Sf' yields 

1 / x2 + y1 + l{d - x) - xd - yz \ 
-fy ,— a v p p n o I • — —. — 1 

* 2 \{{{i - xf + {z - ym{d - x)> + y*)yh) 
0 < * < TT/2 (D14) 

= arctan ( r f - j ) 0 < /? < TT/2 (£15) 

From Fig. 1 

0 

Also from Fig. 1 

7 - 2*1 (F16) 

To complete the model, initial values of 0,, y, and A must be 
specified. 

Solution of Equations 

The system of equations is rewritten below in functional form. 

Algebraic equations 

Differential equations 

dA 

dds 

6 = 6(6,) 

z = z(A) 

x = x{y, 9) 

* = * ( x , y, z) 

P = &(.*) 
7 = 7(0, * ) 

= / ( * , 7, 0, A 2) 

d0s 
fffa, «, * ) 

Initial conditions 

y = yt A = At 

(A) 

(B) 

(C) 

CD) 

(F) 

(G) 

(H) 

CD 
Inspection of the equations reveals that the six algebraic equa

tions have been formulated so that it is possible to sub
stitute the algebraic equations sequentially into succeeding 
equations, eliminating the dependent variables 0, z, x, * , /3, and 
7- After performing the required algebra the equations reduce 
to two first-order coupled ordinary differential equations which 
we numerically integrated using Hamming's modified predictor-
corrector method [6]. At each step in the integration, after the 
new values of A and y are determined by integration, the corre
sponding values of the other dependent variables 0, z, x, * , /3, 
and 7 are calculated from equations (A) through (F). This pro
cedure yields the coordinate points x and y of the reflector as 
Well as the point z on the workpiece to which each ray is directed. 
The integration is halted when z > Zf or when it has been de-

u 
4 0 50 60 70 80 90 100 HO IEO 130 140 150 

POLAR ANGLE 6 (DEGREES) 

Fig. 3 Total intensity distribution of 2 0 0 - w compact mercury-arc lamp 

termined that the source has insufficient energy to produce the 
desired flux distribution. 

Equations (C) and (H) are both singular for 0 = 0 and ir 
radians. If energy is to strike the workpiece a reflector cannot 
enclose a complete 4-7T steradians; therefore the only singular 
point of concern is 0; = 0 = 0. A special starting procedure 
which employs forward finite differences is used to integrate the 
equations at this singular point. 

Design of Reflector 
To exemplify the preceding analysis a reflector has been de

signed for an optical application which requires the illumination 
of a 6-in-dia circle with an approximately uniform flux of 0.480 
w/cm2 using a 200-w compact mercury-arc lamp. The reflector 
was vapor-deposited aluminum on an electroformed nickel shell. 
The workpiece was opal glass. The system was designed to 
operate with a vertical axis of symmetry (the axis of the lamp 
electrodes) with the opal glass in a horizontal plane above the 
lamp and reflector. 

In order to design the reflector for this application the four 
functions Ew, I, p r , and a , must be specified; in addition d, I, 0,-, 
j/i, Zi, and Zf must be chosen. The selected values were d = 0.6 
in., I = 5.0 in., 0; = 60 deg, j / , - = 1.039 in., z, — 0 in., and a/ = 
3.0 in. The minimal restrictions imposed on the four functions 
have been outlined. Because of a lack of information on the 
spectral distribution of the source intensity all spectral effects 
have been neglected in the present application; instead, total or 
average values have been used. The following paragraphs de
scribe the functional forms used in designing the reflector. 

Ew(z). The heat-flux distribution required for the present appli
cation was 

Ew{z) = 0.4805/cos4 0.0582? w/cm2 (17) 

where 0 < z < 3.0 in. Thus the desired flux is essentially uni
form, increasing by only 6.5 percent from the center to the outer 
edge of the workpiece. 

1(6, j). The model permits the intensity of the source to vary 
with state of polarization, polar angle, and frequency. The 
chosen 200-w compact mercury-arc lamp radiates symmetrically 
about the axis of the two electrodes, but its energy distribution 
is a strong function of polar angle 0. The angular distribution of 
total intensity from this lamp was determined experimentally at 
5-deg increments from 45 to 150 deg. The total intensity was 
calculated from heat-flux measurements made using a Gardon-
type [7] calorimeter. At angles greater than 145 deg there is 
convective heating from the wake caused by the free-convective 
flow of air around the lamp. This heating can give erroneous 
heat-flux measurements. The convective heat transfer to the 
calorimeter was minimized by maintaining the calorimeter cool
ing water a t the ambient temperature and by placing a closed 
cell with a 1-mil mylar window over the calorimeter. Figure 3 
shows the measured distribution of total intensity for the lamp. 
The electrical power to the lamp was maintained at 183 w during 
the heat-flux measurements; integration of the intensity distribu
tion indicates tha t 155 w was radiated. For the example reflector 
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Fig. 4 Reflector design for example problem 

system the intensity from 130 to 180 deg was zero, since a shield 
was placed over the lamp to block the direct radiation. A least-
squares procedure was used to fit a polynominal to the intensity 
data points of Pig. 3 from 45 to 125 deg. This polynominal was 
used to model the intensity. It was assumed that the source was 
uniformly polarized 

1(6, s) = 1(6, p) = 1/(0) (18) 

pAv, St", /). The only restriction on the reflector reflectance is 
that it be specular. The specular reflectance may be described 
by Fresnel's equations [8]. 

pOJ>, s) = f(n, k, ¥ ) 

p(&, P) = g(n, k, * ) 
(19) 

where ^ is the angle of incidence, n is the refractive index, and k 
the extinction coefficient. Both n and k and hence also the re
flectance are functions of frequency; however, a wavelength of 
0.492 fx was selected as an appropriate average for the chosen 
source. The appropriate values for aluminum at 0.492 p, are n -
0.64, k = 5.50 [9], The reflectance for aluminum at this fre
quency is constant only for \P less than 45 deg. If many of the 
rays are reflected at angles greater than 45 deg the variation of 
reflectance with both ^ and j may become significant in evaluat
ing equation (2). 

aw(.@, i). The present analysis places no restrictions on the 
model describing the workpiece's spectral directional absorptance. 
For the present application the glass was assumed to be a specular 
reflector; hence 

«08, 3) = 1 - P(P, j) (20) 

where p(/3, j) is defined by Fresnel's equations; n was specified 
based on experimental measurements of crown glass at 0.5086 p. 
[10]. 

Construction of Reflector 
Figure 4 is a scale drawing of the reflector designed for the ex

ample problem. The portion of the reflector used to reflect 
energy to the workpiece is shown with a heavy line. The reflector 
has been extended at both ends; the outer extension provides a 
flange to mount the reflector and the central extension simplifies 
the construction of the reflector. This central extension is re
moved as the final step in construction. The shield for direct 
radiation is also shown. 

After designing the reflector the computer program outputs 
the x-y coordinates of the reflector on 80-column punched cards. 
These cards are used to program a numerically controlled milling 
machine which produces a female template of the reflector cross 
section. A male template is cast from the female template using 
a metal-filled epoxy. . The male template is used to generate on a 

1 0 1 2 3 

RADIAL POSITION, Z (INCHES) 

Fig. 5 Experimental and predicted flux distributions 

tracing lathe a stainless-steel mandrel. The mandrel is polished 
to achieve an excellent surface finish. The reflector shells ate 
constructed by electroforming nickel onto the mandrel. These 
shells can be either gold-plated or aluminum-coated to achieve 
the desired reflectance characteristics. 

The dimensional accuracy of the x-y coordinates of the re
flector cross section was carefully measured at each stage of 
manufacture using a Sheffield Cordax three-axis measuring m&. 
chine. The dimensions of the polished mandrel were within ±2 
mil of the desired dimensions. The electroformed reflector ap. 
parently sprang out from the mandrel near the flange so that 
while at Xi the value of yt was within +0.5 mil of the desired 
value, at x/ the value of y/ was 12.5 mil too large. 

Experimental Evaluation of Reflector System 
The system has been evaluated by experimentally measuring-

the heat flux at the workpiece location using a Gardon-type 
calorimeter and a millivolt x-y chart recorder. This experimen
tal system differs in two characteristics from the previous design 
problem: The electroformed nickel reflector is not coated with 
vapor-deposited aluminum and the workpiece is a black calorim
eter instead of crown glass. Thus the system will not provide; 
the flux distribution prescribed by equation (17). The expected 
flux for this modified system can be calculated using the present'. 
model to predict the flux distribution for the known reflectoi 
shape [4]. Surface characteristics of the calorimeter were as
sumed to be those of a black body; this assumption is consistent, 
with the method of calibrating the calorimeter. Fresnel's equa-' 
tions were used to describe the reflector's reflectance. Experi
mental measurements of reflectance were made at 0.492 p, using 
a bidirectional reflectometer similar to the instrument described, 
by Love and Francis [11]. From these measurements n and h 
were calculated to be 1.961 and 3.23, respectively; these values.-
correspond to a normal specular reflectance of 0.592. 

Figure 5 presents the measured flux distribution and the pre
dicted flux distribution for the experimental system. The re
flector successfully distributes the energy as desired except for i 
peak at the center. Integration of the experimental radial flux-
distribution shows that the system distributes 62.4 w over the 
6-in-dia circle compared with the predicted 60.7 w. 

Figure 6 is a photograph of the light intensity on an opal glass 
workpiece. The visible intensity appears uniform except fof 
"rays" radiating from the center and a dark spot of 0.23-in/ 
radius in the center. It was observed that when the reflector 
was rotated about its axis the ray pattern rotated on the work-
piece. The ray pattern is apparently produced by imperfections 
in the circularity of the reflector. It is hypothesized that the1 

imperfections are from striations on the surface of the mandrel, 
which radiate from the axis and which are produced during turn
ing on the tracing lathe. 

The dark spot in the center of Fig. 6 appears to contradict the 
central peak shown in the total flux measurements of Fig. 5. 
This apparent contradiction is the result of the finite size of the 
source and quantitatively can be explained by modeling the 
source as four point sources instead of a single point. Figure 7 
is a scale drawing of the lamp overlayed with four point sources. 
Each source is arbitrarily assumed to radiate the percentage w 
total power indicated on Fig. 7 with the angular intensity distfl. 
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Fig. 6 Illumination on opal glass workpiece
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Fig. 8 Predicted flux distribution for four-source model

3

Ew(z) = 2KTo
7r(Zj 2 - Z2)1j,

where K is the thermal conductivity of the stainless steel. The
required flux is singular at Z = Zj; however, integrating the flux to
determine the total required power yields a finite value

.EXPERIMENTAL

. r FOUR SOURCE MODEL

/ iSOURCES 2 a 3
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(10'70)
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Axis Of Symmetry.

Fig. 7 Representation of lamp as four point sources

A reflector was designed to produce the flux distribution of
eguation (22). It was assumed that the reflector was aluminum
as in the previous design and that the stainless-steel workpiece
had been coated to achieve a perfectly black surface. The energy
source was assumed to be a uniform point source radiating 300 w.
The geometry was d = 2.0 in., I = 5.5 in., Yi = 1.33 in., Oi = 33.7
deg, Zi = 0 in., and Zj = 0.5 in. Figure 9 shows the calculated
reflector shape and the heat-flux distribution Ew(z). Note that
there are many reflector shapes that will produce this flux dis
tribution since the shape depends on the values of d, I, Yi, and Oi.

The choice of the four variables should be based on obtaining an
optimum shape which maximizes the manufacturing tolerances
for the reflector.

Summary and Conclusions
A model for designing rotationally symmetric reflectors to

produce prescribed flux distributions has been presented. The
model has considered spectral, directional, and polarizing effects;
the ability to include these effects in the model results from the
simple geometry of the system. A reflector system has been
constructed for a specific application and its heat-flux distribu
tion experimentally observed. The experimental measurements
demonstrate that the model is sufficiently accurate to design
heating systems for most applications. Heat-flux predictions
for a four-source model have been presented to show that the
minor differences between the theoretical and the experimental
system are due to the distributed source. The four-source
model indicates that the hot spot in the total measurements and

(21)T(z, x)

where Zj = 1 in.
SOlving equation (21) for the surface heat flux in the circle of

radius Zj by differentiating equation (21) with respect to x and
evaluating at x = 0 yields the required absorbed flux

Mixed· Mode Problems

bution presented in Fig. 3. Source 1 models the infrared thermal
emission of the hot cathode. Since this source is displaced from
the source design point by 0.100 in., the rays doubly illuminate a
circle of 0.367-in. radius producing a hot spot on the workpiece.
Source 2 models the ultraviolet and visible emission from the hot
spot [12] in the arc column near the cathode. This source is
thc dominant source to which the experimental system was
aligned. Since the source is at the design point it will illuminate
the workpiece with the flat flux distribution shown in Fig. 5.
Source 3 models the ultraviolet and visible emission from the
small hot spot in the arc column near the anode. Because this
source is displaced from the design point it does not illuminate a
small circle, thus producing a dark spot at the center of the work
piece. Source 4 models the infrared thermal emission from the
anode; this source also does not illuminate a small circle at the
center of the workpiece.

Figure 8 presents the flux distribution predicted using the four
source model and the experimental total flux measurements. The
four-source model predicts the observed hot spot and the local
minimum at a radius of 0.4 in. Also shown in Fig. 8 is the pre
dicted flux distribution for only sources 2 and 3, which corre
sponds to the illumination recorded on the photographic film.
The model predicts the observed central dark circle.

The accurate specification of Ew(z) often requires ~eveloping a
conduction, a convection, or a radiation heat-transfer model
which is coupled to the model of radiant interchange in the re
flector system. This section briefly illustrates the application of
thc model to a heat-transfer problem of this type.

Consider heating a 1-in-dia circle on the surface of a semi
infinite piece of stainless steel to a uniform temperature To, 360
deg F above ambient, the remainder of the surface being ther
mally insulated. The desired temperature distribution in the
stainless steel is [13]
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cold spot in the photographic observations are not contradictory 
bu t result from different portions of the source emitting a t differ
ent frequencies. I t is expected that an improved reflector could 
be designed based on the four-source model. 
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Optimization of the Directional Emission 
from V-Groove and Rectangular Cavities 
Specially designed cavities are known to produce directional emissivities that have large 
variations with direction. Surfaces with large variations in radiative properties offer 
a means of controlling radiative exchange between surfaces. In this paper a measure 
of the directionality, or degree of focusing, is defined. Possible combinations of direc
tionality and hemispherical emissivity are identified. Two limiting cases for the direc
tional emissivity are discussed which provide collimation of emitted energy in directions 
which graze and are normal to the cavity opening area, respectively. For a given 
strength of emission these idealized situations provide maximum focusing of the emission 
pattern. A V-groove and a rectangular groove are selected as cavities which provide 
directional emissivities that approach the characteristics of the two limiting cases. 
Hemispherical emissivity and directionality residts for both cavities are presented. 
Geometries and surface properties of both cavities are optimized to produce maximum 
focusing of emitted energy. Comparisons are made among the emission characteristics 
of the V-groove, rectangidar groove, and the two idealized limiting cases. 

% 

Introduction 

HEN thermal radiation is incident on a concave 
enclosure, multiple reflections from the surface cause the value 
for the ratio of absorbed to incident energy to exceed the ab
sorptivity of the surface material itself. Similarly, the amount 
of energy emitted through an opening of an enclosure exceeds 
the energy which is emitted from an equal area of the surface 
material. This characteristic, often referred to as the cavity 
effect, suggests that the apparent radiative properties of an en
closure opening can be significantly altered by simply manipulat
ing the geometric shape and the surface properties of the en
closure. In fact, by properly selecting the geometry of a cavity, 
an enclosure can be constructed which has radiative properties 
that approach those of a blackbody. Since the blackbody is the 
standard of comparison for radiating surfaces, it is only natural 
wat there has been a great deal of interest in the absorption and 
emission properties of cavities. A review of absorptance and 
emittance of several of the more common cavity geometries is 
given in reference [ l ] 1 . Surface emissivities for the most part 
'lave been limited to relatively high values in many studies in 
a'i attempt to achieve an apparent emissivity or absorptivity 
aPProaching unity. The surface of the enclosure is normally 
•turned to be a diffuse emitter and reflector, although recently 
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some effort has been devoted to the determination of the direc
tional absorptivity and emissivity of cavities with specularly re
flecting surfaces [2]. 

In contrast to the abundance of information on the properties 
of enclosures to be used as strong emitters, very little has been 
reported on the directional characteristics of the emitted energy 
from enclosures. Just as repeated reflections from the side 
surfaces of an enclosure may enhance its emission characteristics, 
the reflections may also re-direct the energy into desired direc
tions so that a cavity may yield an emission pattern which is 
highly collimated. A directional source of radiant energy acts 
like an infrared searchlight, and surfaces possessing this kind of 
emission behavior can have a large effect on the heat transfer be
tween the various surfaces of a system. An illustration of this 
fact is provided by an experimental investigation [3] undertaken 
to determine what effect the distribution of emitted energy has 
on radiation heat-transfer rates. I t was determined that 
collimated emission from a surface fabricated from specially de
signed cavities is capable of reducing the loss of radiation from 
two parallel plates by as much as 40 percent. This reduction 
represents a significant effect and indicates promise for the use 
of directional surfaces in controlling radiation heat-transfer rates. 

The collimated emission pattern produced by a directional 
emitter can be used in practical applications to control radiative 
energy exchange between surfaces by directing the emission into 
desired paths. For example, a diffuse radiant heater placed on 
the ceiling of a high bay area would direct a significant portion 
of its emitted energy toward the walls of the structure. A 
much more effective and economical emission pattern for this 
heater would be one which produces a directional emissivity 
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close to unity for those rays that are directed toward the work 
area on the floor and a directional emissivity close to zero for 
rays directed toward the walls. 

A spacecraft radiator is another example of an application 
where the collimated energy from a directional enclosure would 
be desirable. If the radiator were designed to emit with a highly 
collimated emission pattern, it would be capable of adapting to 
the sizable variations in incident heat fluxes while still main
taining a close temperature control on the radiator surface. 
Excessive heat losses could be reduced by directing the radiator 
so that its emission would fall on other parts of the spacecraft. 
On the other hand, heat rejection could be enhanced by directing 
the radiator surface so that the collimated emission would be 
directed toward deep space. Other applications for collimated 
emitters, including the use of cavities with variable geometries as 
semi-active control systems, have been discussed by Clausen and 
Neu [4]. 

This paper discusses the design of a cavity not for its high 
emission or absorption capabilities, but for its directional emission 
characteristics. A parameter is defined which provides a measure 
of the focusing of any emission pattern. The problem of selecting 
the cavity geometry and surface properties so as to provide a 
directional emissivity which maximizes the collimating effect of 
the cavity is discussed. The emission pattern required for 
achieving the maximum collimation for a given strength of emis
sion is presented. Two limiting cases are selected which repre
sent the extremes in desired focused effect. The first is associated 
with focusing energy in a direction normal to the cavity opening 
area. The second provides emission focused at grazing angles 
relative to the cavity opening area. Two specially designed 
cavities are selected as enclosures which possess emission patterns 
that approach the two limiting cases. A V-groove is used as a 
cavity that focuses its emission in the normal direction, and a 
rectangular groove is used to obtain collimated emission focused 
in the grazing directions. Hemispherical emissivity and collima
tion data are presented for both of these cavity geometries. 
Geometrical parameters of the V-groove and rectangular groove 
for optimizing the directional effect are presented. Comparisons 
are made of the strength and collimation results for both the 
V-groove, the rectangular groove, and the two idealized limiting 
cases. 

Directional Emission 
The two factors that are of primary importance in the selection 

of a particular cavity for use as a directional source of radiant 
energy are the strength of emission and the degree of collimation. 
The strength of emission is measured by the hemispherical emis
sivity of the cavity. Assuming that the directional emissivity of 
a cavity is only a function of r\, the angle between the normal to 
the plane covering the opening to the cavity and a ray leaving 
the cavity, the expression for the hemispherical emissivity is 

e(jj) cos T]d-q (1) 
0 

In this paper a limiting TJ angle, denoted as T\L, is defined which 
describes the degree of collimation provided by any cavity. The 
limiting i\ angle for cases where near-normal emission is desired is 

arbitrarily defined such that 90 percent of the energy leaving n e 

cavity is enclosed between the angles ±7/i- Thus 

0.9e,, = r 
Jo 

e(rj) cos T]dr] (2| 

For cases where grazing emission is required, the degree o; 
collimation can better be expressed in terms of a limiting r] aiigl8 

defined so that only 10 percent of the energy leaving the cavity 
is enclosed between the angles ±T]L or 

O.le* = 
Jo 

t{t]) cos rjclrj 0; 

Each emission pattern described by the e(r/) distribution 
possesses a unique combination of values for e/, and T\L, but them 
are numerous i.(r\) distributions with the same hemispherical 
emissivity that have different values of i)t. I t is appropriate to 
determine the directional emissivity which, for a given hemi. 
spherical emissivity, will provide the strongest degree of collima-
tion. In this paper two limiting cases of TJL are assumed to 
describe the desired focusing effect. A surface with the strongest 
collimation in the near-normal directions provides a limit tot 
small values of rjc For this case the appropriate definition oi 
1)L is one which provides the strongest Collimation in direction-
normal to the opening area. For grazing emission the objective 
is to produce an emission pattern which has a large value of i([ 
using equation (3) as the definition of r\h-

The problem now involves the selection of a directional emis. 
sivity so that, for a given hemispherical emissivity, the degree ot 
collimation is maximized giving either a maximum or minimum 
value for T]L- The emission pattern which minimizes r\L for • 
given strength of emission is one for which e{-q) is unity for 0 < 
r\ < rji and is zero for 7} > i\\ where r/i is an arbitrary angle. ThL-
pattern is sketched in Fig. 1(a). For this emission pattern the 
hemispherical emissivity and directionality given by equation*. 
(1) and (2), respectively, are 

th = sin rji 

TJL = sin-"1 (0.9ei) 

The values of en and T]L therefore depend only on the magnitude 
of rji. These relations give the minimum value of T)L as a func
tion of £;,. The result is plotted and is labeled as the curve for 
maximum collimation in Fig. 1(6). The emission pattern witi 
zero collimation is that of a diffuse surface. While there aic 
emission patterns which possess larger values of T\L than those 
for a diffuse surface, they are ones for which the energy is focused 
into grazing angles. They are therefore not considered here 
where the purpose is to achieve near-normal collimation. As a 
result, the upper limit for y\h is assumed to be the value for i 
diffuse surface. The limiting r] value for a diffuse surface h 
64.2 deg regardless of the strength of emission. This particular 
T]L value is a result of the arbitrary choice of the constant O.90 
used in the definition of TJL- Based on this definition, all diffuse 
surface have only the single possible value of 64.2 deg for It-
Directional surfaces, on the other hand, may have any valiK 
between 0 and 64.2 deg, but attempts to achieve smaller vnlue 
of TJL require the expense of a corresponding decrease i:- ( 

•Nomenclature-

6 = distance between the apex 
and base of V-groove 

B = distance between apex and 
top of V-groove 

(6/B)opt = depth ratio of a V-groove to 
obtain maximum focusing 
of emission 

h = height of rectangular groove 
w = width of rectangular groove 

e = emissivity 
et = emissivity of the base surface 

of the rectangular groove 
eh = hemispherical emissivity 
e, = emissivity of the side sur

faces of the V-groove 
e(jj) = directional emissivity 

7] = angle between a ray of energy 
leaving the cavity and the 

normal to the cavity ••!,-:' 
ing 

rjL = measure of directional;1;. 

?)i = arbitrary i\ angle illn£'• :•'"-' 

in Fig. 1(a) 

t]i = arbitrary t] angle illus I r:-!'' 

in Fig. 2(a) 

6 = V-groove opening angl'1 
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Fig. 1 Requirements for collimation normal to cavity opening; (a) 
directional emissivity for minimizing TJL for a given hemispherical 
emissivity; (b) possible combinations of strength and directionality 
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Fig. 2 Requirements for collimation grazing cavity opening; (a) direc
tional emissivity for maximizing t/i, for a given hemispherical emissivity; 
(b) possible combinations of strength and directionality 

When the hemispherical emissivity is increased, the cavity be
comes less directional in its emission pattern and the minimum 
possible value of I\L increases. In the limit the maximum emis
sivity is obtained with a black surface which is diffuse, having a 
directionality of rjL = 64.2 deg, thus yielding zero collimation. 
Those e(ij) distributions which are candidates for collimation in 
the near-normal directions possess €/, and I)L values which lie 
inside the shaded area of Fig. 1(5). Points above the shaded 
region are not physically realizable, while points to the right of 
the shaded area are not of interest when normal collimation is 
desired. 

If it is desired to design a cavity which emits a large percentage 
of energy at 77 angles approaching 90 deg, it is appropriate to 
achieve a large value of 772, according to the definition.given in 
equation (3). The directional emissivity which maximizes rji, 
is one for which 6(77) is zero for 0 < r\ < 772 and unity for r\ > 
1)2 as shown in Fig. 2(a). The value of 172 is arbitrary, but for 
each choice of 772 the focusing of the emission pattern is maxi
mized for the corresponding strength of emission. For this 
emission pattern the hemispherical emissivity and directionality 
given by equations (1) and (3), respectively, are 

e„ = 1 sin 772 

771, = s in 1 (1 — 0.96t) 

Possible combinations of eh and 771, providing for high values of 
1i, using the grazing definition of 77̂ , equation (3), lie inside the 
shaded area in Fig. 2(6). Points above the shaded area are not 
Physically realizable, while points to the left of the shaded area 
are not of interest. All diffuse surfaces have a value of 771, equal 
'0 5.74 deg, a value which depends only on the arbitrary choice 
of the constant 0.1 used in the definition of 77 L given by equation 
(3). The diffuse surface again is taken as the limiting case of zero 
collimation. The emission pattern shown in Fig. 2(a) yields the 
"laximum value of 771, for any specified hemispherical emissivity, 
'he result being indicated by the maximum collimation curve in 
"ig. 2(6). Note that attempts to increase 771, are eventually 
thieved only at the expense of decreasing eh. Conversely, if 
!» is increased toward unity the blackbody limit is eventually 
Cached which yields zero collimation. 

Fig, 3 V-groove geometry 

Directional Cavities 
V-Groove for Normal Emission. A V-groove cavity with a flat 

black base and specularly reflecting side surfaces is a source of 
energy that is strongly collimated in directions nearly normal to 
the cavity opening area [5]. The strength and distribution of 
emitted energy leaving the cavity are functions of the cavity 
geometry and the emissivity of the sides of the groove. The 
groove geometry is defined by the opening angle 8 and the depth 
ratio b/B (Fig. 3). The groove is assumed to be infinitely long 
in the direction perpendicular to the plane of the figure. The 
side surfaces of the groove have emissivity es. For the present 
study the emissivity of the V-groove was first found as a function 
of the angle leaving the groove and location across the opening 
area by using a ray-tracing, mirror-imaging technique. The 
values for the local directional emissivities were then integrated 
across the opening area to yield the directional emissivity as a 
function of the angle 77. A brief description of the technique 
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Fig. 4 Directionality for a 60-deg V-groove illustrating existence of an 
optimum depth 

(b/BL 

Fig. 5 V-groove optimum depth ratio corresponding to strongest normal 
emission 

used to determine the directional emissivity of the V-groove 
may be found in reference [6]. A more detailed discussion, in
cluding detailed relationships for the local directional emissivity, 
may be found in reference [7]. For brevity the analysis is 
omitted here and only the results dealing with optimization of the 
directional effects are presented in this paper. 

The specially designed V-groove is a rather interesting cavity 
geometry. Except for the idealized case of a groove with non-
emitting side walls, deep cavities {b/B ->- 0) are diffuse in their 
emission patterns because energy leaving the black base re
flects numerous times before escaping the cavity opening. 
Shallow cavities (b/B -*- 1.0) are also diffuse sources because 
the black base surface becomes large and it dominates the emis
sion pattern. When the groove sides are emitters, there is a 
unique depth ratio between 0 and 1.0 for which the focusing of 
the emission pattern is strongest. The depth for which the 
focusing of the cavity emission is greatest is illustrated in Fig. 4 
where 7]L is plotted as a function of depth ratio for a V-groove 
with a 60 deg opening angle. Since the V-groove was selected 
as a geometry to provide strong emission in the near-normal 
directions, the condition which leads to a minimum value of T]L 
is considered desirable. The depth ratio for minimum r\L will 
therefore be referred to as the optimum depth ratio (6 /5) o p t . 
The optimum depth ratio as shown in Fig. 4 is a rather weak 
function of the sidewall emissivity of the cavity, and it varies 
from about 0.25 to 0.40 for es between 0.05 and 0.20. The di-

60 

40 

20 

• \ \ N a ^" 

^~--__^&--^^^ 

es=o / 
!b/B = 0 ) / 

_ i — . I — . i i. 

b/B = ( b / 8 ) o p , 

20 ISO 100 140 180 

0 (deg. ) 

Fig. 6 V-groove directionality at optimum depth illustrating existence 
of optimum groove opening angle 

rectionality for cavities with non-emitting and black sides has 
also been plotted in Fig. 4 to provide a lower and upper limit for 
f]h. The cavity with black sides is simply a diffuse emitter, 
The r\h angle for this case is 64.2 deg regardless of the groove 
depth. On the other hand, the V-groove with non-emil.ting 
sides yields the most-collimated emission pattern, For a 
groove with non-emitting sides, the optimum depth ratio is 
zero, since the value for r\L continues to decrease as the depth of 
the groove is increased. 

Curves similar to those shown in Fig. 4 are typical of V-groove* 
with other opening angles. In fact, grooves having different 
8 values all exhibit optimum values for the depth ratio except for 
those possessing 6 values close to 0 and 180 deg. As 6 approaches 
either 0 or 180 deg, emission from the V-grooves becomes diffuse 
for all depth ratios, and the existence of an optimum depth ratio 
disappears. A plot of the optimum depth ratio as a function of 
groove angle for various sidewall emissivities is shown in Fig. 5. 
The curves are dashed for 6 less than 5 and greater than 120 deg, 
indicating that no well-defined optimum depth ratio exists for 
these angles. 

In addition to the unique depth that produces the maximum 
directional effect for a given 6 value, there also exists a groove 
opening angle for which the emission pattern is strongest in its 
collimation. The existence of such an opening angle can be 
explained by the following reasoning. For small groove angles, 
reflections within the cavity are numerous and the cavity effect 
is dominant. The emission pattern as a result tends to be diffuse 
and the emissivity approaches unity regardless of the cavity 
depth. As the groove opening angle approaches 180 deg Hie 
cavity emission is dominated by the base surface which again 
yields a diffuse emission pattern and an emissivity close to one. 
At intermediate groove angles the emission pattern is focused as 
illustrated in Fig. 4. This reasoning suggests that there should 
be an optimum groove angle between 0 and 180 deg for which the 
collimating effect is strongest. 

Figure 6 shows the variation of f)L as a function of 6 with b/B 
taken to be the optimum depth ratio as indicated in Fig. 5. For 
the cavities with non-emitting side surfaces the depth ratio was 
always chosen to be zero so that the absolute minimum value of 
J)i was obtained. For cavities with emitting side surfaces lhe 

optimum groove opening angle indicated in Fig. 6 ranges from 
about 40 deg for es = 0.05 to about 55 deg for es = 0.20. 

To verify the capability of the V-groove for producing 8 

collimated emission pattern, the hemispherical emissivity '' 
plotted in Fig. 7 as a function of the directionality for a groove 
angle of 40 deg. The limiting curve for minimum r\h of I'1?1 

1(b) is indicated as a dashed line in Fig. 7 to give an indicati°n 

of the effectiveness of the 40-deg V-groove as compared with IM 
ideal directional emitter. The minimum value for 7]L is reach™ 
at the optimum depth ratio for the 40-deg groove indicated in 
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Fig. 8 Rectangular-groove geometry 

Fig. 5. Figure 7 shows that a groove with non-emitting sides 
and a depth ratio of zero has the strongest focusing effect, but 
it also is weakest in terms of total emission. 

Rectangular Groove for Grazing Emission. While the V-groove is 
a geometry particularly suited for collimated emission in the 
near-normal directions, a specially designed rectangular groove 
is capable of producing directional emission focused in directions 
which graze the cavity opening area [4]. This type of rectangu
lar groove has a specularly reflecting base with emissivity e;, and 
vertical side surfaces that are assumed to be black emitters. 
The depth of the cavity is h and the width between the vertical 
side surfaces is w (Fig. 8). The directional emissivity given in 
reference [4] for this type of cavity is 

e(r?) = 1 - (1 - ei) 1 
h 

2 — tan r] 
w 

where r\ is limited by the equation 

+ (—) 
\2h/wJ 

7] < tan 

(4) 

(5) 

The emissivity is unity for -q angles above the limit of equation 
(5). 

Representative curves of directional emissivity given by 
equations (4) and (5) are shown in Fig. 9. When h/w = 0 the 
emission pattern is diffuse with a hemispherical emissivity equal 
to the value of the base-surface emissivity. As the cavity be
comes very deep the emission pattern again becomes diffuse 
with the hemispherical emissivity approaching unity. At inter
mediate values of h/w the directional effect of the groove's 
emission pattern increases and the strength of emission decreases 
as the cavity becomes shallower. Similar to the characteristics 
of the V-groove, there is a depth of the rectangular groove which 
will cause the collimation of the emission pattern to be maximized. 

Expressions for the hemispherical emissivity of the rectangular 
groove may be obtained by substitution of equations (4) and 
(o) into equation (1). The resulting hemispherical emissivity 
•or the rectangular groove is 

«C)) 

Fig. 9 Directional emissivity for the specially designed rectangular 
groove 
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Fig. 10 Directionality and strength for Ihe rectangular cavity; compari
son with limiting case 

eh = 1 - (1 - eb)[(W/w* + !)'• 2h/w] 

The value of rjL for the rectangular groove depends upon whether 
•qi is larger or smaller than the limit imposed by equation (5). 
If T/L is greater than the value of t] given by equation (5), then 
the directionality is given by 

sin 7}L = 0.1 + 0.9(1 - €6)[(47iVw2 + l ) ' / ! - 2h/w] 

If T]L is less than the value of rj given in equation (5), then the 
directionality is given by the expression 

sin rjL 2(h/w) (Lr)-'-"(4s) 
X — (4/iVto2 + l ) 1 / ! - ISh/w ] 

Both of these expressions for T)L yield the same result when r\L = 
t an" 1 (w/2h). 

Plots of the hemispherical emissivity and directionality for the 
rectangular groove as a function of base emissivity and groove 
depth are shown in Fig. 10. The curve for the limiting case of 
maximum i\t shown in Fig. 2(6) is also included in Fig. 10 so 
that the emission pattern of the rectangular groove can be com
pared with the one which provides the upper limit for TJL- The 
emission pattern is entirely diffuse (T)L = 5.74 deg) when the 
sides of the groove becomes vanishingly small {h/w = 0), with 
the exception of the case of the cavity with non-emitting base. 
The emission is diffuse regardless of base-surface emissivity as 
the groove becomes very deep (h/w —»• a>). At intermediate 
depths the value of TJL is always greater than 5.74 deg, indi
cating that the cavity produces an emission pattern that is more 
focused than tha t of a diffuse cavity. The maximum value of 
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Fig. 11 Directionality of the rectangular cavity illustrating the ex
istence of an optimum cavity depth 

T]L for a cavity with an emitting base increases as the base 
emissivity decreases, indicating that the emission pattern for 
rectangular cavities becomes more collimated as the base emis
sivity is reduced. As long as the base surface is an emitter of 
radiant energy, there is a unique depth of the rectangular groove 
that gives an emission pattern with a maximum value of TJL-
Since the rectangular groove was selected in order to provide a 
source of energy with a large portion of its energy leaving at 
grazing angles, the depth that produces a directional emissivity 
with a maximum value of r/L can be considered an optimum 
depth. Therefore, just as there was an optimum depth for 
the V-groove, there is also an optimum depth for the rectangular 
groove. The groove with the strongest collimation is one with 
a non-emitting base which is very shallow. This particular 
idealized cavity also has vanishing strength of emission, how
ever, and cannot be fully achieved in reality. 

The optimum depth for the rectangular groove is illustrated 
further in Fig. 11 where the directionality is shown as a function 
of the groove depth-to-width ratio for various values of e&. In 
general, rather shallow cavities with base emissivities close to 
zero have the strongest collimated emission. Note that for the 
idealized case of a non-emitting base, the value of IJL continues 
to increase as the groove becomes shallower, analogous to the 
behavior of the V-groove with non-emitting sidewalls. 

Conclusions 
Specially designed cavities with specularly reflecting surfaces 

can be used as sources of highly collimated emission or as ab

sorbers that have large variations in directional absorptivity, 
A V-groove with flat black base and specular sides is a direc. 
tional cavity that emits a large percentage of its energy in the 
near-normal directions. A properly designed rectangular groove 
with black sides and specular reflecting base is a directional 
cavity with a large percentage of its emitted energy leaving at 
grazing angles. 

A limiting emission angle may be defined which is a convenient 
measure of the directionality or degree of collimation of any 
emission pattern. Two such limiting angles have been defined 
in this paper, one for cases of near-normal emission, equation 
(2), and one for grazing emission, equation (3). Possible com-
binations of strength and degree of collimation for both defini
tions are identified in Figs. 1 and 2. 

An optimum depth of the V-groove exists which produces an 
emission pattern with the strongest collimation of emitted 
energy. The optimum depth ratio increases as the emissivity 
of the groove sides increases and as the groove opening angle 
decreases. The optimum depth values of all V-grooves are 
shown in Fig. 5. 

An optimum V-groove opening angle exists which produces an 
emission pattern with the strongest collimation of emitted 
energy. For values of sidewall emissivity between 0.05 and 
0.20, the optimum opening angle ranges between 40 and 60 
deg as shown in Fig. 6. 

An optimum depth of the rectangular groove exists tha t pro
duces an emission pattern with the strongest collimation of 
emitted energy. For base emissivities of the rectangular groove 
between 0.05 and 0.20, the optimum depth-to-width ratio ranges 
between 0.25 and 0.90 as shown in Fig. 11. 
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Solidification of a Semitransparent Cylindrical 
Medium by Conduction and Radiation 
The effect of the radiative transport on the solidification rate and on the temperature dis
tribution in a semitransparent cylindrical medium is investigated. The integral 
method is employed in the analysis, and results for the cases of absorbing, opaque, and 
nonparticipating media are presented. It is concluded that the radiative contribution 
to the process of phase change does have a significant effect on the solidification rate and 
on the temperature distribution in the solid phase. 

Introduction 

ENGINEERING problems in which one material is 
transformed into another or into another phase with generation 
or absorption of heat continue to receive appreciable attention. 
Problems of this nature arise in areas such as melting or freezing 
of a solid, the progress of a temperature-dependent chemical 
reaction through a solid, the growing of vapor films, and others. 
The nonlinear nature of these problems requires in most cases 
numerical or approximate analytical techniques [1-3].1 

Little study, if any, has been devoted to the solidification of 
semitransparent materials in which a substantial contribution to 
the process is due to the heat transfer by radiation. Such prob
lems occur in the recrystallization of semitransparent solids ac
companied by latent heat of recrystallization. 

In an earlier study [4] we employed the integral method to 
study the effect of the radiative heat transfer on the solidifica
tion, rate and on the temperature distribution in the solid phase 
of a semitransparent planar medium. We felt that in the ma
jority of cases it is useful to have an approximate solution which 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
'! THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manu
script received by the Heat Transfer Division September 3, 1971. 
Paper No. 72-WA/HT-5. 

can describe, however qualitatively, the phenomena under ex
amination. The results for the planar medium showed that the 
radiative contribution to the process affects the solidification 
rate and the temperature distribution appreciably. 

In the present study we extend the problem to investigate the 
effect of the radiative transport on the solidification rate and on 
the temperature distribution in a long cylindrical medium. The 
integral method is also used in the present analysis, and it is be
lieved tha t in this way the significance of the radiative contribu
tion to the process in cylindrical geometry can be well demon
strated. 

Analysis 
Figure 1 represents the problem considered, and it is the one-

dimensional solidification of a semitransparent cylindrical homo
geneous isotropic material with constant thermophysical and 
optical properties. A unique melt temperature Ti is assumed to 
exist and the liquid phase is maintained at this temperature. 
The surface at y = 0 (r = Ri) is considered to be the cold wall 
at a constant temperature TV To reduce the complexities of 
the problem we assume the melt line and the cold boundary to 
be black surfaces. We note that in the study of a planar me
dium [4] the melt line and the cold boundary were not assumed 
black, and the effect of the emissivities was to slightly modify 
the solidification rate and the temperature distribution. No 
significant change in density occurs during solidification. The 
formulation given here is valid for the analogous melting prob
lem with obvious modifications only. 

•Nomenclature-

0 
E 

E„ = 
V )2/,7) = 

Dn = 

specific heat capacity 
blackbody emissive power; 

-EV, Ei, emissive power of 
surfaces 1 and 2 respec
tively 

exponential integral 

s i n 2 7 ] 1 / 2 

exponential integral func
tion 

k = thermal conductivity 
n = index of refraction 
qr = radiative heat flux; qr,a, ra

diative heat flux at 
y = 0; qr,„ radiative heat 
flux at y = s 

r = radius; R%, exterior radius of 
cylinder 

s = solid-liquid interface, "melt 
line" 

^urnal of Heat Transfer 

t = time, integration variable 

T = temperature 

a = thermal diffusivity 

A = latent heat of freezing 

p = density 

o" = Stefan-Boltzmann constant 

K — absorption coefficient 
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Fig. T The present model 

The energy equation for the problem can be written in the 
form 

pc 
bT 

bt 

1 d 

(R2 - y) by 
(Ri -

for 0 < y < 

subject to the following conditions: 

bT 
k 

by 
qr,v = pX - at y = s 

(1) 

(2a) 
dt 

T(0, t) = T2 (26) 

T(s, t) = Ti (2c) 

where y = R2 — r and all other quantities are defined in the 
Nomenclature. Integrating equation (1) from y = 0 to y = s 
using equation (2a) results in the following equation referred to 
as the heat-balance integral: 

X \ , ds 

c I dt 

where 

i" 
Jo 

dd 1 bT\ - + %«( — 
dt \by/y = o 

(R2 - y)T{y, s)dy 

Ri. , 
Wr,v)v=o 

pc 
(3) 

(4) 

In solving the heat-conduction problems with the integral 
method in rectangular geometry a polynomial approximation 
works well in representing the temperature profile. Lardner 
and Pohle [5] investigated the application of the integral method 
to the solution of the heat-conduction problems in regions with 
cylindrical and spherical symmetry and have shown that poly
nomial representation alone of the temperature profile would be 
inaccurate as an appi'oximation. This is to be expected since 
the volume into which the heat flows does not remain the same 
for equal increments of r in the cylindrical and spherical coordi
nate systems; hence a modification in the assumed temperature 
profile is necessary. Lardner and Pohle suggested the follow
ing modifications for the temperature profiles. 

In the cylindrical coordinate system the temperature profile 
may be chosen in the form 
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T = (polynomial in r) • In r 

and in the spherical coordinate system, the form 

T = (polynomial in r)/r 

In the present problem, if we let the temperature profile be reprg, 
sented by the form 

(-1) In (r/R2) + D 0 < r < R2 (5) 

then three conditions are necessary to find the constants. Equa, 
tions (26) and (2c) are two conditions and the third is essentially 
equation (2a). But equation (2a) in its present form is not 
suitable because the coefficients in the polynomial would involve 
ds/dt. In turn, the heat-balance integral, equation (3), would 
involve the second derivative for s(t), whereas there is only one 
initial condition for s, namely s(0) = 0. To avoid this diffi. 
culty we differentiate equation (2c) with respect to time 

bT ds bT 
h — = 0 

by dt bt 

bT/bt 

dt bT/by 

If we substitute equation (66) in (2a) we obtain 

fbTV = / g ^ \ /bT\ _ pX 

\byj \ k j \ b y j k bt 

(6a)' 

(66) 

(7) 

From the differential equation for the problem, equation (1), we 
substitute for bT/bt in equation (7) and obtain the third required 
condition as 

'dry ffr^dT_^_d2T X bT 

k by c by2 c(R2 — y) by 

kc by 
(ir.v) 

ck(R2 — y) _ly-s 

Introducing the variable y and using condition (26) the tempera
ture profile takes the form 

T2 A + B 
(R2 ~ y) 

R2 

> ( Ri - y 

R2 
0<y< 
s < R2 

Using equation (2c) and equation (8), A and B are then deter
mined from the following expressions: 

A = 
o - Vd* + 417 

B = ({-.A) 
\R2 - sj 

(10) 

(11) 

and 

5 = 

2Ztf -
2ZJ _ 1 

Ri — s k(R2 — s) 
g.r,y + 

Qr.v 

z, + z2 

1 22, 
(Ri - s)» (Ri ~ s) 

ZS 

(12) 

'A A 
kc by 

9r,V 
k 

Z,l - Z,f . . . qr,v 
kc(R2 — s) 

2ZX 
+ Z{-

(13) 
(Ri - sY (Ri - s) 
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r, - r2 (14) 

In I 

1 L(«. 2T, = 
0 + 

z* = 
X 

\ «2 / 
1 / f t - s 

(ft - s) n \ ft 

, / f t - s\~ 
)] 

4re 

(15) 

(16) 
c(ft - s)2 

Radiative Heat Flux 
In a cylindrical absorbing and emitting medium of index of 

refraction n bounded by black surfaces2 the radiative heat flux 
for constant absorption coefficient and no scattering can be 
written in the form3 [6, 14] 

/R2-s\ 
\R2-yJ 

••'/* J 7 = o U o 
[E(y') - EI]K 

(y' - ft) 

»/ 11 

X A [ i | f t ' , ! / , T ) - (Ri-

(y' - ft) 

F(y', V, 7 ) 

F{y',y,y) 

y) cos y\]dy' 

[E(y') - E,}K A [ « { ( f t — y) cos 7 

+ F(y'> V, J)}]dy'y cos ydy V cos ydy — j 
/2 

y — sin'" 

X {/: 
\Ri-vJ 

[E(y') - EI]K 
(y' - ft) 

F(y', y, 7 ) 
A[/c{(ft — y) cos y 

+ F(y',y,y)}]dy 

X D2[/c{(ft 

J y 
) - E2]K 

(y' - ft) 
F(y',y,y) 

V) cos 7 - / % , j / ' , y)\]dy'\- cos 7^7 

- ( « i - Ei) 
/ f t - s \ 

U - 2/7 (17) 

In equation (17) the exponential integral function Dn{x) is de
fined by 

D„(x) = 
• ; . 

*' /2 / -X 
(cos" :co) exp 1 ) dco 

0 \ cos co, 

/ . (1 ~ M2)'A 

and it has the recurrence relation 

Dn'(x) = -t>n^{x) n > 1 

o> (18) 

(19) 

where Dn'(x) is the derivative of D„(x) with respect to x. In a 
previous analysis [6] a formulation for the radiative heat flux 
in a cylindrical medium was carried out using the approximation 

D,(x) 

where a and 6 are arbitrary constants. Calculations were made 
Using this approximation and a comparison between the approxi
mate and the exact results was made. Excellent agreement was 
obtained for 0 = 1 and 6 = i/l. We note that this approxima
tion is similar to the well-known approximation used in the 
Planar geometry for the exponential integral Et{x). 

Employing the approximation given in equation (20) we ob-

2 In answer to a referee's comment we note that the emissivity 
°' the solid-liquid interface depends upon the optical properties of 
We two phases. However, to include such a dependency in the 
analysis would result in a high degree of complexity while the ob
jective in this paper is fundamentally to show the significance of the 
ri*diative transport in the process. 

In [6] the radiative heat flux in a cylindrical medium for non-
Mack boundaries is also presented. 

tain the following expression for the radiative heat flux: 

iln ( n ) 
\R2-yJ ^_ = r7=sln \R^V) ( rv 

'VT J7-O Uo 
[E(y') - EI]K 

(y' - ft) 

/ 
" y 

F{y', y, 7 ) 

X exp [-bic[F(y', y, 7 ) - ( f t - y) cos y}]dy' 

' [E(y') - E,\K ^ ~ R'\ exp [ -6 K {( f t - y) cos 7 
F(y', y, 7 ) 

+ F(y', y, y)\\dy'\ cos ydy -'> cos ydy — I 
r / 2 

,(Rt~s\ 
\Ri~v/ 

X -< I [E(y') - EjK^' , Rl) exp [ -6«{( f t - y) cos 7 
F{y', y, 7 ) {£ ,Bi"'> 

F(y',y,y)}]dy'+ f [EW) - F,]K 
(y' - ft) 

F(y',y,y) 

X exp [ —&/c{(ft — y) cos 7 — F(y, y', y))}dy'\ cos 7^7 

- m - E2) ( §^±) (2i) 
\ f t - y) 

Equations (3), (4), and (8) require that the radiative heat flux 
with its spatial and time derivatives be taken at y = 0 and at 
y = s. Performing these operations results in the following 
integral expression for the propagation of the solid-liquid inter
face with time: 

J o 

- ( f t - s) (M. 
a{A + B) + ft 

in which we set dd/dt = (3(ds/dt) and 

b 

pc 

(22) 

-IC ds 
r ( s ) 2 / ) ( f t - y)dy + 7 \ ( f t - s)) (23) 

In some previous studies [7-9] approximations to the propaga
tion of the solid-liquid interface in opaque bodies were obtained 
by considering that the temperature in the frozen region follows 
tha t in a hollow cylinder in the steady state, namely 

T(r, t) = 
(T, - 1\) In ( f t - y) + T2 In ( f t - s) - Tx In ft 

In \ft - sj 
(24) 

If equation (24) is used in boundary condition (2a) the following 
expression results for the propagation of the solid-liquid inter
face: 

(20) t = pX Jo k^ 
( f t - s)[In ft - In ( f t - s)]ds 

T2) - ( f t - s ) [ l n f t - In ( f t - s)]qr,a 

(25) 

This expression for opaque bodies yields the following known t 
vs. s relation; 

~k(Ti - Ti)t _ ( f t - sy 

pX ~ 2 
In 

R2 
(2fts - s2) (26) 

Solution 
The method of solution used in solving equation (22) is similar 

to the one we employed for the planar geometry [4]. Equation 
(22) requires that the radiative heat flux and its derivatives be 
determined first. That involves integration over the tempera
ture distribution in the solid, which is unknown a priori, and 
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demands values for A and B that reflect the effect of radiative 
transport at each value of 8. The method of successive substi
tution, then, was used to determine A and B from equations 
(10)-(16). When the difference in the calculated values of A 
and B between two consecutive iterations was within 1 percent 
of the magnitude of each, the iteration was stopped and the 
values then obtained were considered satisfactory for the par
ticular value of 8. The method converged to the correct values 
of A and B very fast and in most cases did not require more 
than two iterations. With the correct values of A and B and the 
corresponding values for qr .• , qr .• , and (dqr.y/dy)I" equation (22) 
was then integrated to obtain the value of time for that chosen 
8. The method was repeated for each prescribed value of 8, 

resulting in the desired 8 VB. t curve and in the temperature dis
tribution at each 8. 

Results and Conclusions 
Figures 2 and 3 show the location of the solid-liquid interface 

as a function of time with and without the effects of radiation for 
four sets of conditions. Results for other thermophysical prop
erties behaved in a similar fashion. It can be seen, as was shown 
in the planar problem, that the case of the nonparticipating 
medium,4 K = 0, represents an upper bound on the solidification 
rate, while the pure conductIon base (opaque body) represents a 
lower bound. An increase in the radiation absorption in the 
medium shifts the solidification curve toward the pure conduc
tion case. Results based upon the steady-state temperature 
distribution, equation (25), are also shown. Solidification rates 
obtained using the steady-state temperature distribution are 
lower for opaque and for radiating media than those obtained 
using the more exact int'egral method. We note however that 
for opaque materials in both methods the solidification rate is 
proportional to the square root of time, 8 ,-oJ 0. 

In Fig. 4 we see that the radiation phenomena appreciably 
affect the temperature distribution in the solid phase. For the 
present model the temperature distribution for a nonparticipating 
medium is higher than that for a pure conduction one. This 
might seem at first unusual; however, it should be emphasized 
that the solidification rate for k =' ° is much higher than that 
for pure conduction. Increasing the absorption in the medium 
raises the temperature distribution further away from that of 
pure conduction. This can be attributed to a decrease in the net 
radiation loss by the medium to the boundary. The propaga
tion rate of the interface and the temperature distribution in the 

4 For a nonparticipating medium the radiative heat flux is con
stant for all values of s and reduces to the Case of the gray concentric 
cylinder. 
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solid phase for materials with high thermal diffusivities were 
little affected by the radiation contribution.6 
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effect on the temperature profile is not large, as shown in Fig. 4 for 
materials with high thermal diffusivities. vVe note that the choice 
of the numerical values presented in this paper was made to include 
a wide spectrum of materials that undergo change of phase by vitrifi
cation or amorphous phase transition, crystallization, melting, and 
crystal-crystal transition. 
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Perturbation Solutions for Spherical 
Solidification of Saturated Liquids 
A perturbation solution is obtained for outward and partial inward spherical solidifica
tion of a liquid initially at the freezing temperature. The constant-wall-temperature 
boundary condition is considered with the properties of the solidified material assumed as 
constants. A nonlinear transformation is applied to the sequence of partial sums in 
the perturbation solution to increase its range of applicability. For inward solidifica
tion it is found that the regular perturbation solution diverges for front positions close 
to the center. An Eider transformation and an overall energy balance are then used to 
obtain a modified series solution which is compared with numerical results. 

Sc 
Introduction 

IOLIDIFICATION problems are of great practical im
portance. They are encountered in applications such as freezing 
foods, casting thermoplastics or metals, the formation of ice, in 
thermal storage devices for space vehicles, and during freezing 
of soil. 

London and Seban [ l ] 2 presented solutions for freezing rates in 
one-dimensional problems where the energy content of the 
solidified material was completely neglected. Kreith and Romie 
[2] assumed a constant freezing-front speed and obtained solu
tions through iterative approximations for one-dimensional 
geometries. Langford [3] obtained a solution assuming a non
linear relation between first- and second-order time derivatives 
of the front position in spherical freezing. Longwell [4] used a 
graphical technique to obtain numerical values for one-dimen
sional freezing problems. Tao [5] applied a numerical method 
and presented the results in graphical form for inward solidifica
tion in the cylinder and sphere. 

The present investigation applies a perturbation technique to 
solve for temperature distributions and freezing rates during 
spherical solidification. A perturbation technique to solve 
planar solidification problems was considered by Lock [6], In 
his analysis both the temperature distribution and the freezing-
front position were expanded in powers of a physical parameter 
which represented qualitatively the ratio of sensible to latent heat, 
the independent variables being time and position within the 
solidified material. This is in contrast to the technique presented 
in this paper where the front position replaces time as an in
dependent variable and no need arises to expand the freezing-
front position in a perturbation series. 

1 Part of doctoral dissertation, Department of Mechanical Engi
neering, Columbia University, New York, N. Y. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL OF HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division December 8, 1971. Paper No. 
72-HT-Q. 

POSITION OF 
FIXEO WALL,RW 

FREEZING FRONT 
POSITION, Rf TEMPERATURE 

DISTRIBUTION 

Fig. 1 One-dimensional spherical geometry shown for the case of out
ward solidification 

The solutions obtained assume the fusion temperature and nil 
thermal properties to remain constant. Further, the liquid is 
assumed to be at the fusion temperature. The solutions pre
sented will also apply for melting problems if the liquid motion is 
neglected. The perturbation technique introduced in this paper 
can be applied to other boundary conditions and geometries. 

Analysis 
Regular Perturbation Solution—Outward and Partial Inward Solidifica

tion. The analysis deals with a one-dimensional spherical con
figuration as shown in Fig. 1. The heat flow within the frozen 
spherical shell is governed by the transient heat-conduction 
equation; since there is spherical symmetry and constant proper
ties are assumed, this has the form 

dT ~ B dR1 (U 

The constant temperatures at the fixed wall, Tw, and at f'ie 

freezing front, Tf, yield the boundary conditions 

T{t, R = fl„) = Tw T(t, R = Rf) = Tf (2) 

Since the temperature of the liquid is assumed to be constant at 
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the freezing temperature, an energy balance at the interface 

yields 

dRf k dT 

dt pL bR R=Rf 

Substituting equations (8) into (6) and equating coefficients of 
equal powers of e yields 

(3) 

We define the dimensionless quantities of physical parameter e, 
temperature u, radial position r, freezing-front position ?•/, and 

time T as 
Tf - Tw T - T„ R 

u = r = — 
L T, - Tw Rw 

1 d2(rui) 

r dr1 

0 for i = 0 

\3 = i 

= C 

rs 
Rf 

Rw 

T, - Tw 

pLRw
2 (4) 

ulrj, r = r,) = 

ut(rf, r 

9i = 

1 for 

0 for 

= 1) = 0 

bui 

dr ,_r, 

for i > 1 

i = 0 

i > 1 
(9) 

The product of the specific heat of the solidified material C and 
{he maximum temperature difference Tf — Tw is an indication 
of the sensible heat in the solid. Therefore the physical parame
ter e is a qualitative measure of the ratio of sensible to latent 
heat. Let the dimensionless freezing-front speed be 

The linear system of equations (9) was solved up to the second-
order terms, yielding 

11-

Mo 

1 
= 1 + 7T 

6 
1 - — 

r V 

g = 
iff 

Ik (5) 
4?y - 1 

120 

i 

r/2 

1 -

i ['-£)• 
(0-]) fey 

Substituting equations (4) into equations ( l)-(3) , changing 
variables (t, r) —>• {rf, r), and substituting equation (5) yields the 
boundary-value problem in its normalized form 

(6) 

g_ 1 £ 1 + 6r/ t^ 

go 3 r, 45 ?'/3 

Z>u 

OTf 

u(rf, r = 

1 

r 

rf 

d2(ru) 

dr2 

) = 1 

where the zeroth-order terms are 

1 
1 

Mo = 

u{rf, r = 1) = 0 

dr 

1 
1 

go r,(rf - 1) 

(10) 

(11) 

(12) 

Equation (11) can be inverted and integrated to give 

3(r, - I)2 

The solution to equations (6) can be written in general i 

u = u(rf,r;e) g = g{rt; e) 

%rs - I)* (r, - I)* 
+ e 

(7) 

Expanding the dependence of u and } o n e in Taylor series about 
6 = 0 yields the following perturbation series: 

1 fo ~ *> 
45 rf 

(13) 

u(rj, r; e) = u0(r,, r) + eui(r,, r) + €hn(rf, r) + 

g{rt; e) = g0{rf) + tgi(r,) + t2gt(rf) + . . . 
(8) 

I t is usually possible (because of the algebraic complexity) to 
calculate only the first few terms of the perturbation solution. 
However, if properly used, the first few terms of the solution will 
yield a large amount of information. This was the topic of a 

•Nomenclature-

C = specific heat of solidified material 
k = thermal conductivity of solidified 

material 
£ = latent heat of fusion 
R = radial position in solidified ma

terial 
B/ = radial position of freezing front 
#» = radial position of fixed (spherical) 

wall 
T = temperature distribution in solidi

fied material 
*/ = freezing temperature 
"» = temperature at fixed (spherical) 

wall 
t = time 

a ~ thermal diffusivity of solidified 
material, k/Cp 

P = density of solidified material 

"""eilsionless quantities 

•"• = function of e introduced in equa
tion (22) 

' = value of K including the ith power 

of £ in equations (24) and (25) 
and satisfying equation (26) 

g = normalized freezing-front speed, 
drf/dr 

(ji = coefficient of e* in the regular per
turbation series for g 

r = normalized radial position in solidi
fied material, R/Rm 

ri = normalized freezing-front position, 
R,/Rv, 

u = normalized temperature distribu
tion in solidified material, {T — 
Tw)/{Tt - Tw) 

Ui = coefficient of e* in the regular per
turbation series for u 

i 
Ui1 = ^2 e'Uj, ith-order regular per-

3 = 0 

turbation solution for u 
u* = value of u after nonlinear trans

formation is applied to u0, Ui1, 
and U2' 

Hi = coefficient of £* in the modified per

turbation series for u 

Hi1 = ^2 S'Mj, ith-order modified per-
j = 0 

turbation solution for u 
e = perturbation physical parameter, 

C(T, - Tw)/L 
7] = 1/r, 
H = V/(K + V) 
T = normalized time, k(Tf — Tu)t/ 

(pLRJ) 
Ti = coefficient of e* in the regular per

turbation series for r(rf) 
i 

Ti' = y^ t'Tj, rth-order regular per-
3 = 0 

turbation solution for r(r/) 
T* = value of T after the nonlinear 

transformation is applied to To, 
7ie, and T2( 

Ti' = normalized freezing time in the 
modified perturbation solution 
including the i th power of £ in 
equations (24) and (25) 
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paper by Shanks [7] in which he considered a family of non
linear' sequence-to-sequence transformations. The transforma
tions become most useful when the perturbation series is slowly 
convergent or divergent. Since in the above solutions, equations 
(10) and (13), only the first three terms have been calculated, it 
is only possible to apply the simplest of these transformations. 
For the normalized temperature distribution the result is 

UoUl — t(.UoU2 — Ml2) 

£M2 

(14) 

which can be combined with equation (10) to obtain 

u 
Mo 

1 + 
r, H + 

irt i 

20 
1 + (0 

03 

6l = - -

rf 136 

_ i „ 

fe)'-l 
M £ H 

irf - 1 

120 

. 1 + 6r, 

fey Mo4 

(19) 

45 

lit,' + - fey-]} 
1 + 

1 4?v - 1 
h — 

6 20 
1 + fey 

(15) 

The same nonlinear transformation can be applied to the terms 
in equation (13), yielding for the normalized time 

1 - 3rf
2 + 2ry3 + e 

2_ 1_ 

15 _ 

3r/a + 1rs 

rt 
+ (r/ - D2 

6 + 1 1 
5 r, 

(16) 

The absolute values of the ratios of the first- and second-order 
terms to the quasi-steady-state temperature distribution reach 
their maximum values at the fixed wall (r = 1 ) . The magni
tudes of the first- and second-order corrections for both the tem
perature distribution (as r approaches one) and the freezing time 
reach their maximum values relative to the zeroth-order terms 
when r/ is at its minimum position. This will occur for outward 
solidification at the instant freezing begins. Hence it should be 
expected that the perturbation solution will be least accurate at 
this instant. For \rf — l | « 1 the perturbation solution for 
spherical solidification can be shown to be identical with that in 
the plane. Therefore a comparison with Neumann's [8] exact 
solution in the plane, for (r — 1 )/(r/ — 1) « 1, will yield the maxi
mum percentage errors in the temperature distributions and 
freezing times given above. These errors are shown in Table 1 
and should represent upper bounds for the perturbation solution 
for outward solidification. 

Modified Perturbation Solution—Inward Solidification. For inward 
solidification it can be seen from equations (10), (11), and (13) 
that the regular perturbation solutions will diverge for freezing-
front positions near the center. Equations (10) and (11) can 
also be written as 

M 1 1 

— = 1 + eai h (2a3 —: 
Mo rf rs

% 

9 1 1 
- = 1 + eft, - + e2&3 — 
<7o rf rf

a 

(17) 

(18) 

where 

Note that as r/ approaches zero, M0a; and h; (i = 1, 3) remain finite 
quantities. The general form of the series (17) and (18) is 

13 = 1 4- C.17 + C3v
3 + C6i?

6 + (20) 

where 

V = l/'V (21) 

and the quantities C; are known functions of e, r, and ?-/. Equa
tion (20) can be subjected to an Euler [9] transformation with a 
parameter K = K(e) (which will be later determined from an 
overall energy balance), yielding 

j8 = 1 + KGl{l + £)? + K(& + K*CM> 

+ K(Cl + 3if2C3)£4 + K(d + 6K*C3 + K'Cs)? + . . . (22) 

where 

V 
£ = 

K + v 
(23) 

Note tha t £ approaches one as 77 approaches zero. If equa
tions (17) and (18) are transformed according to the general 
series equation (22), there results 

M 0 

1 + Xaie(l + £)£ + Ke(a, + K*<H6)? 

+ Ke(ai + 3K'a3e)^ (24) 

— = 1 + X M 1 + £)£ + Ke(b: + K%t)¥ 
g« 

+ Ke(h + 3K%t)¥ (25) 

An overall energy balance can be taken from the instant 
freezing begins to the moment that the center of the sphere 
freezes to obtain 

i>u 

C1 "r> r_i f 1 

I — drj + t I r2«(?7 = 0, 
J o g J o 

r)dr = 
1 + e 

(26) 

Table 1 Percentage errors in the regular perturbation solution for initial spherical solidification 

% r o 
% r i « 
% T 2 < 
%r* 
% Mr -> 1) 
% M(r — 1) 
%M(r-+ 1) 
%u*(r-+l) 

0.2 
0.0822 

-2.639 
0.0282 

-0.0011 
-0.0007 
-1.317 

0.0341 
-0.0010 
-0.0001 

= £ 
j = i 

ehj 

0.4 
0 

- 1 0 
0 

- 0 
- 0 
- 5 

0 
- 0 
- 0 

3564 
22 
4481 
0588 
0358 
087 
5513 
0851 
0205 

Ui' >; 
3=0 

0 
0 

- 2 1 
2 

- 0 
- 0 

- 1 0 
2 

- 1 
- 0 

t'Uj 

6 
9205 
78 
222 
7238 
4019 
81 
875 
113 
2129 

0.8 
1.996 

- 3 5 . 8 6 
6.807 

- 4 . 5 4 5 
- 2 . 1 6 0 

- 1 7 . 7 9 
9.552 

- 7 . 7 2 8 
- 1 . 0 3 7 

1 
4.060 

- 5 0 . 7 4 
15.93 

- 2 0 . 1 6 
- 7 . 4 8 9 

- 2 5 . 3 2 
25.22 

- 3 9 . 7 6 
- 3 . 2 0 8 
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Fig. 2 Normalized freezing-time solutions in the regular perturbation 
series for outward solidification 

Equations (24) and (25) can be truncated at powers of ~ of value 
less than four. Subsequent substitution into equation (26) will 
yield one equation to solve for the function K = K(~). Define 
Ie to be the value of K including the ith power of ~ in equations 
(24) and (25) and satisfying equation (26). The resulting 
(transcendental) equation to solve for K1 is 

(27) 

Define Tit to be the normalized freezing time in the modified per
turbation solution including the ith power of ~ in equations (24) 
and (25). The solution including the zeroth- and first-order 
terms is 

[1 
3 - ~Kl 3 + (3 - ~)K, ] X - I'f - ------ In -----'-------'----

3K, 3 + (3rf - ~)K, 

3 - ~ 1 - I'f 3 + -- (1 - 1'f') - -~ (28) 
6 3 

It becomes progressively more difficult to perform analytically 
the integrations of the expressions yielding Ie and Tit for i > 1. 
It will be shown that for ~ ::; 1, TIt agrees well with the finite
difference numerical integration of the boundary-value problem. 
The solutions for Ki and Tit for i > 1 were obtained numerically 
llsing Simpson's rule with increments in freezing-front position 
of 0.025. 

Define the ith-order modified perturbation solution for the 
normalized temperature distribution as 

i 

iiit = L ~iiii (29) 
j~O 

A.t the instant that the center of the sphere freezes, equation (24) 
YIelds 

iii t(1'f = 0, r = 0) = 1 (30) 

while for l' > ° 
Journal of H eat Transfer 

'u! = i E j U' 
1 j-a .I 

a ----ul 
- .f--_ u~ 
------ u* 
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Fig. 3 Normalized temperature distributions in the regular perturbation 
series at a normalized freezing-front position rf = 2 

iio(rf = 0, r) = ° 
~Kl 

iilt(rf = 0, r) = -- (1 - 1')(2 - 1') 
6 

0, 1·) -_ Eli, (1 3 - 1')(2 -1') 

0, r) 

0, r) 

~K3 
- (1 - r) 
2 

[ 
~K3' ] X 2 - r - ~ (8 + 81' - 12r' + 3r 3

) 
180 

(31) 

By considering the limiting values of equations (31) as l' ap
proaches +0, one obtains the following conditions that must be 
satisfied in order for the temperature distribution to be between 
its values at the fixed wall and at the freezing front: 

~ 

(32) 

( 
K3'~) ](3~ 1 - ~ < 1 
4.5 -

No multiple-valued solutions were found for ](, and K, in the 
above ranges of physical importance. For certain values of ~ 
there existed more than one K3 and K4 satisfying the above in
equalities. In such cases the solutions chosen were the lowest 
positive values available. 

Results and Discussion 
Figure 2 shows the normalized freezing time obtained from the 

regular perturbation solution for outward solidification. Zeroth-, 
first-, and second-order solutions as well as nonlinear transformed 
solutions are shown for various values of ~. The first- and second
order terms are of opposite sign, suggesting that the exact solu
tion will probably be found between the first- and second-order 
solutions. For initial solidification the transformed solution 7* 
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NORMALIZED FREEZING FRONT POSITION, rf = ~ 
Kw 

Fig. 4 Normalized freezing-lime solutions in the modified perturbation 
series for inward solidification 

was found (see Table 1) to be more accurate than the second-
order solution T2(. I t is also expected that r* will be more ac
curate than n' for other front positions. The values for T* are 
always found to be between those of Ti' and rj1 . For clarity, the 
curves for r * in the cases of e = 0.5 and 1 are not shown. 

The normalized temperature distributions at a front position 
?7 = 2 are shown in Fig. 3. The exact solution probably lies 
between Uil and UiK The values for u* are always found to be 
between those of U\l and u%(. For clarity, the curve for u* is not 
shown in the case of e = 2. For r/ i>> 1 the first- and second-
order terms will approach zero and the temperature distribution 
approaches the quasi-steady-state solution. 

The values of K in the modified perturbation solution for in
ward solidification were calculated from equations (26) and/or 
(27) and are listed in Table 2. The values of K decrease in mag
nitude with increasing e and with increasing number of terms 
in the modified series solution. If this condition did not exist, 
then equations (24) and (25) could become divergent series. 

The modified series solutions for freezing times are shown in 
Fig. 4. The values for f%1, fa', and f4

( were sufficiently close to 
warrant no graphical distinction. There is good agreement with 
the regular perturbation solutions over their ranges of applicabil
ity. The modified series solutions agree closely for e = 0.5 and 1 
with the freezing times calculated numerically in [5]. The re
sults from [5] appear to be a little high for t = 0.1. For large 
values of e the modified series solution including four terms 
appears to be inaccurate in describing freezing rates. The dis
agreement with the values from [5] becomes significant for e = 2. 
This failure in the modified series solutions for large values of e 
probably stems from the inadequacy of the linear system of equa
tions (9) to describe solidification processes when the effect of the 
specific heat in the solidified material becomes very important 
relative to the latent heat of fusion. 

The modified series solutions for the temperature distribution 
at the instant of freezing to the center as given by equations (31) 
are shown in Fig. 5. The values for UaKrf = 0, r) and Uil(ji = 
0, r) were sufficiently close to warrant no graphical distinction. 
Numerical values from [5] for positions r > 0.1 are also shown. 
The modified series solution yields temperature distributions 
with a point of singularity at the center of the sphere and should 
therefore be inaccurate in its vicinity. For freezing-front posi-

uj(r f = o,r) 

NORMALIZED POSITION, X = ~-
Rw 

Fig. 5 Normalized temperature distributions in the modified perturbation 
series at the instant of freezing to the center 

Table 2 Values of the parameter K satisfying the overall energy balance 
for complete inward solidification, equations (26) and/or (27) 

e 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
2 
3 

X i 

14.96 
9.099 
6.699 
5.350 
4.474 
3.854 
3.391 
3.030 
2.741 
2.503 
1.351 
0.9287 

Kt 

5.084 
3.279 
2.504 
2.054 
1.754 
1.537 
1.372 
1.241 
1.135 
1.046 
0.5988 
0.4237 

K3 

3.395 
2.175 
1.655 
1.355 
1.156 
1.013 
0.9038 
0.8176 
0.7476 
0.6894 
0.3952 
0.2801 

IU 

2.643 
1.674 
1.266 
1.032 
0.8774 
0.7669 
0.6832 
0.6173 
0.5638 
0.5195 
0.2968 
0.2102 

tions away from the center there is no point of singularity and 
the accuracy of the temperature distributions should improve,. 
For front positions far from the center it is also possible to obtain 
the temperature distribution from the regular perturbation, 
solution. 
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Heat Transfer by Natural Convection 
between Vertically Eccentric Spheres 
Natural convection to a cooled sphere from an enclosed, vertically eccentric, heated 
sphere is described in this paper. Water and two silicone oils were utilized in conjunc
tion with four different combinations of sphere sizes and six eccentricities for each of 
these combinations. Both heat-transfer rates and temperature profiles are presented. 
The effect of a negative eccentricity (inner sphere below center of outer sphere) on the 
temperature distribution was an enhancement of the convective motion, while a positive 
eccentricity tended to stabilize the flow field and promote conduction rather than con
vection. As for concentric spheres, a midticellular flow pattern was postulated to ex
plain the thermal field observed for the largest inner sphere utilized. In all cases the 
heat-transfer rates were increased by moving the inner sphere to an eccentric position, 
and the utilization of a conformal-mapping technique to transform the eccentric spheres 
to concentric spheres enabled the application of existing empirical correlations for con
centric spheres to the eccentric-sphere data. It is significant to note thai this technique 
yields a single correlation equation, in terms of only kcti/k and a modified Rayleigh 
number, which is valid for an extremely wide range of diameter ratios, eccentricities, 
Rayleigh numbers, and Prandtl numbers. 

Introduction 

L LTHOUGH the accurate prediction of natural-con
vection heat transfer within enclosed spaces is becoming in
creasingly important and more studies are appearing each year, 
knowledge in this area is still rather limited. Such information is 
important in several practical applications including the design 
of nuclear-reactor in-pile experiments, spent-fuel shipping con
tainers, and reactor cores for thermal safety during emergency 
power-off situations. Apart from these and other practical con
siderations there remains unresolved the question of the inter
action between the hydrodynamic and the thermal effects, es
pecially under the unusual stability conditions associated with 
enclosures. As a first step in the study of this problem several 
relatively simple geometries, including rectangular cavities, con
centric cylinders, and concentric spheres, have been investigated 
both experimentally and analytically. 

The first investigations utilizing the spherical geometry [f-3] 1 

concentrated on an experimental determination of temperature 
profiles, heat-transfer rates, and flow patterns for air as the test 
•hud. By using diameter ratios ranging from 1.10 to 3.14, 
Grashof numbers based on gap thickness ranging from 2 X 104 

to 3.6 X 106 were obtained. In addition an analytical solution 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Jointer Annual Meeting, New York, N. Y., November 26-30, 1972, of 
'HE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript 

'Reived by the Heat Transfer Division July 20, 1971. Paper No. 
'2-WA/HT-2. 

for natural convection between concentric spheres at low Rayleigh 
numbers has been presented by Mack and Hardee [4]. This 
solution consists of the expansion of the temperature and stream 
functions in power series of the Rayleigh number and the evalua
tion of the first three terms in each of these series for a Prandtl 
number approximately equal to tha t of air. 

More recently, heat-transfer and temperature-profile results 
have been obtained for a greatly extended Prandtl-number range 
by Scanlan, Bishop, and Powe [5]. Water and two silicone oils 
were utilized and the resulting data were combined with the pre
vious air data to yield an overall Prandtl-number range of 0.7 to 
4148. For relative gap widths (r0 — n)/n between 0.09 and 1.81, 
it was found that the heat-transfer results, both for each fluid 
individually and for all the data combined, could be correlated 
simply in terms of kBit/k and a Rayleigh number. 

The purpose of the present s tudy is to extend the previous 
results to include the case of eccentric spheres, where the eccen
tricity is parallel to the gravity vector and along the vertical 
diameter. An experimental study of the natural convection of 
fluids contained between a cooled outer sphere 24.9 cm in diame
ter and heated inner spheres with diameters ranging from 11.4 
cm to 22.8 cm is discussed, and temperature profiles and heat-
transfer data are presented. Water and silicone oils were utilized 
as the fluid in the gap to yield Prandtl numbers ranging from 4.7 
to 4148. The results are combined with those of previous experi
mental investigations to yield detailed descriptions of the tem
perature profiles and an extremely general correlation equation for 
the heat-transfer data over a very wide range of Prandtl numbers, 
Rayleigh numbers, relative gap widths, and eccentricity ratios 
e/(r„ - ?•;). 
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Nat ural convection to a cooled sphere from an ellclosed, vertically eccentric, healed 
sphere is described ill this paper. Water alld twu silicone oils were utilized in COlljU1IC
tion with four d~flerellt combillations of si)here sizes ({nd six ecceutricities for each of 
thesc comiJill'iliolls. 130th heat-trmlsfer !'!Ites a1/ll temperature profiles are /)resenteri. 
The eflect of a lIega!-i!'c eccentricity (inner sphere below center of ollter sphere) all the 
temperatllre distribution MIS 1111 ellhancemellt of the collvectil'e motion, while a i)osit1:ve 
eccentricity Irmded to stabilize the flow field and prom etc collliuction I'Ilther than COIl-

1'cetion. 11 s for COllcell/ric sl)heres, a muitireitillar flow /)(l/tern was postulateil to ex
/)lain the thermal field obsen'ed for the largest imler sphere utilized. In all cases tlze 
lzeat-t1'l1l1sfer ratcs ~iJere i1lcreased by mm'illg the inner sphere to n'll eccentric position, 
nllli the utilization of n GllI/jormal-mapping technique to trall.ljorm the eccentric spheres 
to collcentric spheres emlbled the applicrttioll of existing empiriClll correlations for CO1/.

centric Sf)/leres to tlze eceentric-s/)here daln. It is sig1lijiCllnt to note that this teclzll'iquc 
yields a sillgle correlation equation, ·in terms of 0111y /teff/k lIJul a modified Rayleigh 
number, wlzicll is !'IIlid for an extremely wide range of diameter ralios, eccelltricities, 
Rayleigh numbers, nnd Prrllllltlnumbers. 

Introduction 

AUI'HO{;(;1I the acr·.lIrate pl'edict ion of nat.llral-con
vect.ioll ill!at· t.rallsf(!1' with ill (!IlPinsed spa('(" is b(!corning in
creasingly impol't an t. and mOl'e st lid ies are appearing each yeaI', 
knowledge in this area is st ill rat.her limitcd. SlIr:h informat.ion is 
import.an L in sevcral prar:t.ir!:d :tpplicat ions inelllding t hc dcsign 
of nllr:leal'-n):Lr:t.ol' in-pilr! cxpC!l'imC!nts, spr!nt.-fnel shipping r:on
tnillC!rs, and I'car:t.ol' ['OI'PS fol' tlwl'll1al safpty dlll'illg r!nll!rgenc,Y 
powel'-off sit lIations. Apart fl'om these and ot her praet.ir:al con
~iderat.iuns therc remains IImesolved the question of the intm
netioll betwecn t.he hydl'Odynamic and t·llI! t.llI!rlllal effccts, cs
pecially IIndm t.he tUl\ls\Ud stabilit.y condit.ions as.sociatr!d with 
enclosllres. As a fil'.st step in t.he stlldy of this pl'Oblem sr!vcral 
rclat.ively simple gr!onll!t.l'ics, inclllding rcctanglliar caviti!'.s, r!on
centl'ir: cylinders, and r:oncr!ntl'ic sphcl'es, have been invcst.igat.ed 
both expel'in1C!n(.ally and anal,}'1 ieally. 

The nl'sL invest.igat.ions \\lili~ing t Iw sphel'ir:al gcomct I'Y [l-;~J I 
COllecnt·rated Oil an cxpcrinu'nt.al dr!lermillat ion of t emperat lire 
profiles, heaL-transfel' rat.es, and flow patterns for ail' as the t.est 
Rnid. By using diametcr ratios ranging fl'Om J .10 to ;l.H, 
Grnshof ntllnbers based on gap t.hir'loll!ss ranging fl'om L X 10' 
10 :l.G X 10' wen! obt.ail\(!d. In addit.ioll all alla Iyt ir'al solll t.ion 

I i\ lImbor, in brackets desil(l"L\,o l{ofCl'OIlCO' at. olld of papr,r. 
I,Contributed by the Ileat Tmllsfer Dil'ision and present.r!d at. the 
1111 101' Allnllai :'.·leet.inl(, New York, N. Yo, Novolllber 2(j· :lO, t072. of 
l'ln: Ib"':1!lCA>I SOCIETY ()!o' :\lI-:CllASICAI. E>I(;(>lI·:I·:HS. :'.Ianllseript. 
received hI' tho 1I0nt. Tmn,for Divi,ion .Illll' 20, (!171. Paper No. 
72-\\, A/ll'i'-2. . 
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fol' na(.ural Conv(!et ion bdween eonr.entric splwre~ allow Haylcigh 
numbel's has bepn p['(~sented hy ;\lack and Hardec [11. Thi~ 

solution r:onsists of the cxpansion of t.hr! tpl\lpcrat\l['(~ and st.l'eam 
functions in powcr scrics of t hp Bayleigh nUl\lhcr and the evailla
t.ion of thc firs! t hl'Pp t r!rllls in eaeh of these s(!l'ies fol' a Pl'llndt.1 
nlllllb(!l' appl'Oximately pC(lIalto that of ail'. 

;\Iol'<~ I'ceentl,v, hreat-transfcr and tel\lperaturr!-pl'ofilp n~sttlts 

havc hecn ohtained for a greatly r!xtelllied Prandt.l-lluIllhcr range, 
by Scanlan, Bishop, and 1'0we [;'il. Watr!1' and l.wo silieonc oib 
Wr!rr! lIt.ili~pd and tIll! I'Psult.ing dat.a wPl'e col\lhincd with the pl'e
violls ail' data t.o yield an overall l'l':Indt I-numbel' range of 0.7 to 
111X. For rclative I!aj) widths (1'0 - 1',)/1', between O.O!) and Ull, 
it. was found t.hat. t hp heat -t l'illlSf(~r rcsult s, bot h for cal'll fluid 
individually and fol' all t.he dat.a r:ombin(~d, wuld be eorrelat.pd 

sil\lply in terl\ls of k,·rr/k and a Hayleigh lltll\lhel'. 
Th(, purpose of t.hc prcscnt. st·lldy is to cxt.end the prcvious 

rcsllih to incillde thr' case of r!!!cellt.rie splwrps, whcre the eccen
t.ricit.y is parallel tot lIP gravity vcet or and along the vprt.ir,al 
dianll!tel'. All experil\lent.al stlldy of t.he nat.ural r'ollv(~dion of 
fluids cont aincd het wccn a coolpd 011 t.er spherc ~4. U r'lll in diame
tel' and he:tted inllt!l' splIPI'PS with dialll!!l.el's ranging from 11.4 
r:m t.o 22.i) cm is disr,"~sed, and t r!mperat mc profiles and heat
t.l'!lnsfer dat.a arc prcsent.cd. Wat.r~l' and siliconc oils were utili~ed 
a~ thc fluid ill thc gap to yield Prandtlnumiwl's ranging f!'OIll 4.7 
to 'I Hi). TIll! n!slllt.s an! cOl\lbined wit h t.hose of prcvious pxperi
Illelltal investigations to yicld d(!taikd deseriptions of the tcm
pera (.ure p!'Ofilcs and an extl'emely W,lwral correlat ion equat ion fol' 
t hr! heat.-t ransfr!l' da t a OVPI' a very wide range of Prand tllllllllhcr~, 
Ilayleigh Ilt\lnlH'l's, l'elativ(, gap widths, and ececntricit.y ratios 
1'/(1' .. - 1',). 
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Fig. 1 Heat·transfer apparatus 

Apparatus and Procedure 
The heat-transfm' apparatus shown in Fig. 1 consisted basically 

of a heated inner sphere and a cooled outer sphere, both enclosed 
within a spherical water jacket. The outer stainless-steel sphere, 
which was 24.9 em ID, was used in conjunction with four copper 
inner spheres having outer diameters of 22.8, 17.8, 13.9, and 11 ,4 
cm. These were supported in the outer sphere by a 1.27-cm-dia 
stainless-steel stem which was insulated on its lateral surface; 
a screw-type adjustment on t his support stem allowed positioning 
of the inner sphere to any desired vertical location within the 
outer sphere. 

An isothermal inner-sphere surface was achieved by internally 
condensing Freon-ll vapor. The surface temperature could be 
varied by changing the power input to electrical heaters which 
were submerged below the Freon liquid level. Since it has pre
viously been established that this method of heating provides an 
isothermal surface [1], the surface temperature was measured by 
four thermocouples located at 90-deg intervals around the hori
zontal equator of the sphere. A small stainless-steel tube ex
tended through the support stem for pressure measurements 
within the inner sphere and for venting during Freon charging 
operations. 

The outer sphere and the water jacket were each composed of 
two stahiless-steel hemispheres joined by an external flange and 
sealed with an O-ring to facilitat e disassembly. Thermocouple
probe guides were attached to the outer surfaces of both the outer 
sphere and the water jacket. The outer sphere was supported 
within the water jacket by a removable stainless-steel spacer. 

The water utilized to maintain the outer sphere at a constant 
temperature was provided by a closed supply system, shown in 
Fig. 1, consisting of two commercial water chillers, a centrifugal 
pump, and a 25.,gal insulated storage tank. Water from this 
system was introduced at the base of the water jacket and with
drawn at the top through manifold systems. The outer-sphere 
emperature, which was taken to be the average of the inlet and 

outlet water temperatures, could be varied by adjusting the tern. 
perature level on the chillers. 

Temperature profiles within the space betweenthe Lw() spheres 
were obtained by using thermocouple probes made of 24-gauge 
copper and constantan wires inserted through 15-gauge st.ainless_ 
steel support tubes. The wires were fused together to fOI'Il\ 
small thermocouple junctions and then sealed to the luhes at 
both ends with an epoxy cement. Each support tube wa~ at. 
tached to a micrometer probing mechanism which could advance 
the probe and indicate its position to within 0.003 em. The 
micrometer probing mechanism attached to the probe located 
along the upper vertical axis was also used for determilling the 
exact location of the inner sphere. Previous work [1-:IJ had indio 
cated that for concentric spheres under steady conriitiollS the 
flow is axisymmetric, and it was hypothesized that this would 
also be the case for eccentric spheres. Thus five thermocouple 
probes were placed in a common vertical plane through tlw center 
of the spheres. These probes were spaced at 40-deg intervals be
ginning with the probe on the upward vertical axis, 'I' = 0 deg. 

A total of approximately 1100 heat-transfer runs were Con. 
ducted with water, Dow Corning 200 fluid-20 CS, alld Dow 
Corning 200 fluid-350 CS in the gap. The Dow Coming 200 
fluids are silicone-base fluids, and the 20 CS and 350 CS designa
tions refer to the kinematic viscosity in centistokes at, 25 (leg C. 
Henceforth these fluids will be refened to as 20 and 350 fluids . 

For each of the inner spberes utilized, and for each vulue of the 
eccentricity, five to 15 different vahles of temperature difference 
between the two spheres were established by controlling the 
power input to the heaters. The natural-convedil)Jl hent. 
transfer rate q is the difference between the power illPIl L to the 
electrical heaters and the heat loss due to the supporting :-;tem. 
Since the stem was well insulated on its lateral surface, convection 
from the stem was considered to be negligible and the tolul stem 
loss was taken to be due to conduction. Calculatiolls showed 
that this loss was less than 1 percent of the total power illpu t for 
the largest D.T and the largest negative eccentricity ralil). 

In general, heat-transfer rates and temperature profiles were 
obtained for six values of eccentricity ratio, e/(1'o - l'i ) = ±0.25, 
±0.5, ±0.75, for each size inner sphere. Additional data for a 
zero eccentricity ratio (concentric spheres) were not obLailled, but 
the current information was combined with previously available 
data for concentric spheres [5] to yield extremely generul correla
tions. The ranges of the independent variables considered IlrO 

shown in Table.!. 
Before obtaining either heat-transfer or temperature-profile 

data, sufficient time was allowed for establishment of Ht.eady. 

Table 1 Ranges of Independent variables for water, 
20 fluid, and 350 fluid 

Variable 
1'0 
1"i 

Ti 
To 

e/(1'o - ri) 

Minimum value 
12.45 cm 
5.7 cm 
4 deg C 
o deg C 

-0.75 

Maximum vllille 
12.45 cm 
11.4 em 
83 deg C 

4 deg C 
+0.75 

---Nomenclature,-----------------------------..... • 

g 

Gr 
lc 

L 

Nu 

constant-pressure specific heat 
eccentricity measured positive 

upward as defined in Fig. 4 
local gravitational acceleration 
Grashof number, g(3£3D.T /v2 

thermal conductivity 

effective fluid thermal conduc
tivity, qL/ (47rtlTRi rO) 

gap thickness between concen
tric spheres, ro - Ri 

Nusselt number based on inner
sphere radius, q/(47rI·ikD.T) 
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PI' 
q 

1', R, ~ 
RaL 
Ra* 

T 
w 

Z = 

Prandtl number, via 
natural-convection heat-trans-

fer j'ate 
radli, see Fig. 4 
Rayleigh number, Gr· PI' 
modified Rayleigh number, 

g(3L4D.T / (Vr:xRi) 
temperature 
complex plane con taining 

mapped concentric spheres, 
u + iv 

complex plane containing ec
centric spheres, x + iy 

a 
(3 

IlT 

SUbscripts 

i 
m 
o 

thermal diffusivity 
thermal-expansion coefficient 
temperature difference bet.ween 

spheres, 1'; - To 
kinematic viscosity 
angular cOOl'dinate meusmed 

from upward vertie!l.l axis 

refers to inner sphere 
indicates mean value 
refers to outer sphere 
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Fig. 2 Variation of temperature profiles with eccentricity for water, 
rol'i = 1.787 

state conditions. Temperature traverses were made utilizing 
the thermocouple probes at three temperature differences (small, 
intermediate, large) for each inner sphere, test fluid, and eccen
tricity ratio. 

Temperature Distributions 
Profiles of temperature 7' as a function of radial position l' were 

obtained at selected values of 117' and angular position if> for 
each Hize inner sphere and at each eccentricity e for the three test 
ftuids utilized. As w~th concentric spheres [5], the behavior of 
the temperature profiles was found to follow consistent general 
trends for all except the largest size inner sphere. For all values 
of eccentricity, temperature fluctuations, interpreted as the result 
of unsteady flow, occurred for the largest values of I1T, and only 
profiles for which no such fluctuations occurred are presented 
herein. The general shape of the temperature profiles was found 
to be relatively independent of 117', as was first observed for con
centric spheres [1, 5]. 

The effects of both positive and negative eccentricities on the 
temperature profiles are shown in Fig. 2, where the solid lines 
!'epresent concentric-sphere profiles from [5]. In the current in
vestigations a unicellular-type flow pattern, perhaps of either the 
crescent-eddy or the kidney-shaped-eddy type, is indicated for all 
degress of eccentricity. Near the bottom of the gap, at the if> = 

160-deg position, the fluid is relatively stagnant and eccentricity 
has little effect on the temperature profiles. In fact for a posi
tive eccentricity the fluid appears to remain relatively stagnant 
all the way up to the if> = 80-deg position. At the if> = O-deg 
location the temperature exceeds the concentric-sphere value 
near the inner surface and is less than the concentric-sphere value 
neal' the outer sphere, possibly indicating the existence of a large 
corner eddy neal' the inner-sphere surface. For negative eccen
tl'icities the temperature at a given position was generally larger 
than the corresponding value for concentric spheres, except neal' 
<I> = 40 deg and if> = 80 deg where the two values were approxi
mately the same. 

In order to conserve space, additional temperature-profile plots 
will not be presented; however, the same general trends as ele
,cribed above were observed for all spheres used and for all test 
flllirb. The basic flow patterns obtained for eccentric spheres, 
as hypothesized from the temperature profiles, appeared to remain 
e.lsentially unchanged from those of concentric spheres, although 
sOme slight modifications did occur. These included an enhance
ment of the convective motion by negative eccentricities, while 
flow stabilization as well as a large comer eddy appeared to be 
jlrollloted by positive eccentricities. The same conclusions re-
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SPHERE RESULTS 
fROM [5]. 

Fig. 3 Effect of ecc~ntricity on heat-transfer rates 

suIted for even the largest inner sphere utili~ed, where the exis
tence of a multicellular flow pattern was postulated in order to 
explain the behavior of th~ temperature profiles for both concen
tric and eccentric situations. 

H eat-transfer Results 
Heat-transfer results for eccentricities and radius ratios at the 

extremes of the ranges under consideration, as well as for all test 
fluids, are shown in Fig. 3. The solid lines in this figure 1'Ilpresent 
the concentric-sphere equations for individual fluids developed 
by Scanlan, Bishop, and Po we [5] for a radius ratio of 1.787, 
while the d&shed lines represent the corresponding equations for 
a radius ratio of 1.092. As would be expected on this type of 
plot, both the radius ratio and the Prandtl number significantly 
affect the heat-transfer results for both concentric and eccentric 
configurations. However it is somewhat surprising to note that 
for a given radius ~'atio and test fluid the heat transfer may be in
creased by moving the inner sphere either tIP ward or downward 
from the concentric position. In general this was found to be 
true for all cases studied in the current investigation, even though 
the temperature profiles and probably the flow patterns are some
what different for positive and negative eccentricities. This 
tends to confirm the relative insensitivity of the overall heat 
transfer to the detailed thermal and flow fields for natural con
vection in enclosed spaces as found in our previous work. 

The cllstomary use of dimensional analysis indicates the follow
ing functional relationship for concentric spheres, see, e.g., Ipsen 
[6] : 

keff/k = F[(1'o - 1'i)/Ti, Gr, Pr, y(3(l'o - 1'i)/Cp , (3117'] (1) 

It has previously been found that the last two parameters on the 
right-hand side of this equation are usually not of importance in 
free-convection processes and thus may be eliminated. The in
clusion of one additional independent variable, eccentrioity, 
results in the following functional relationship : 

/ceff//c = F[(1'o - 1'i)/1'i, Gr, PI', e/(1'o - Ti)] (2) 

An I1ttempt could be made to find & correlation equation of the 
form of (2), although this process would be complicated some
what by the inclusion of the additional parameter. 

The current geometry suggests It different approach, however. 
If a suitable mapping function can be found, then conformal
mapping techniques can be utilized to trl1nsform the eccentric 
spheres to concentric spheres. An "ttempt can then be made to 
utilize existing concentric-sphere correlations for the eccentric
sphere elata. Such an approach was taken, and it should be em
phasized that this technique provides merely an empirical cOl'l'e
lation method-no attempt was made to examine the manner in 
which the governing equations and boundary conditions were 
transformed by the mapping function. The pertinent coordinate 
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'X lL 

cC 

Fig. 4 S~hematic defining nomenclature and coordinate system for 
eccentric spheres 

systems for using this approach are shown in Fig. 4. In this 
figure the unmapped positions are deJlOted with capital letters 
while the corresponciing mapped locations are denoted with 
lower-case letters. If the plane of this figure is taken to be the z 
plane, with 

z = x + iy (3) 

then it is found that the eocentric spheres can be mapped into 
concentric spheres in the w plane, with . 

w=u+iv 

through lise of the mapping function 

w= 
1'0(az - To) 

aro - z 

where a, b, and e are given by 

1 + be + V(l - b2 )(1 
a = 

b + e 

e + r; b---
To 

e = 

(4) 

(5) 

e - 1'i 

TO 

(6) 

The mapped concentric spheres in the w plane are also shown 
in Fig. 4. It may be observed that the radius of the outer sphere 
is invariant Ullder the transformation, while the radius of the 
innel' sphere becomes 

To(b - e) 
Ri = --------~====~====== 

1 be + V(1 - b2)(1 - e2 ) 

(7) 

Thus, in order to determine whether this mapping technique does 
correlate the heat-,transfer data, the actual inner-sphere radius 1'i 

may be replaoed by the mapPed radius Ri and an attempt made 
to utilize existing correlation equations to predict the data. This 
mapped radius is shown in graphical form in Fig. 5. It is en
couraging to note that the mapping function yields the same 
inner-sphere radius for both positive and negative eccentricities. 

The foregoing mapping technique also suggests a temperature 
upon which to base fluid properties for calculating the parame
ters appearing in existing correlation equations. It has pre
viously been found [.5] for concentric spheres that rather simple 
correlations result if fluid properties are based on a volume
weighted mean temperature, obtained by considering the fluid 
from the inner sphere to & mean radius to be at temperature Ti, 
while the fluid from the mean radius to 1'0 is at temperature To. 
It is extremely difficult to find an equivalent temperature for 
eccentric spheres which can be ev&luated simply, but the mapping 
technique suggests using a volume-weighted mean temperature 
similar to that of the concentric case and given by 

Tm = (Rm' - Ri')Ti + (To' - Rm')To 

1'0' - Ri' 

50 / FEB R U A R Y 1 97 3 

(8) 

Yr;,.099 
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0.30 
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,-~,--~~ 5 G 1 6 

ABSOLUTE VALUE OF ECCENTRICITY RATIO, 1o,1 

Fig. 5 Mapped inverse radius ratio as a function of eccentricity ratio 
for different radius ratios 

where 
Ri + To 

(9) 
2 

Henceforth all fluid properties will be based on this temperature. 

Heat-transfer Data Correlation 
As mentioned previously, heat-transfer results were obtained 

for four different sphere combinations and for six eccentricity 
ratios with each set of spheres. Each of these tests was con
ducted with three different fluids: water, 20 fluid, and 350 fluid. 
The conformal-mapping techniques were then utilized to map the 
eccentric spheres into concentric spheres, and the appropriate 
parameters, including conductivity ratio keff/k, Rayleigh number 
RaL, Prandtl number PI', and gap-radius ratio L/Ri, were calcu
lated using the mapped sphere sizes. An attempt was then 
made to utilize the empirical equations previously developed by 
Scanlan, Bishop, and Po we [5] for concentric spheres to correlate 
the eccentric-sphere data, and this section will be concerned with 
comparisons between these equations and the present data. 

Scanlan et al. [5] found that the data for each fluid individually 
were best correlated by equations of the form 

(10) 

and the empirical constants which they obtained are given in 
Table 2. Also included in this table is a comparison of the devia
tions encountered in using these equations for concentric spheres 
and mapped eccentric spheres. 

Although equation (10) best fits the data for each individual 
fluid, it may be observed that 'Y/ is relatively small, and Scanlan 
et al. [5] found that only a slight loss in apparent accuracy was 

Table 2 Empirical constants and deviations for equatil)n (10) 
for eccentric and concentric spheres 

Fluid Water 20 CS 350 CS 

'Y 0.078 0.072 0.104 

r 0.279 0.30.5 0.28H 

'Y/ 0.155 0.124 0.110 

Average % deviation 
(concentric spheres) 13.4 6.0 5.3 

Average % deviation 
(eccentric spheres) 12.7 12.8 10.7 

% of data within ±20% 
of equation (concentric 
spheres) 79.6 97.9 97.5 

% of data within ±20% 
of equation (eccentric 
spheres) 77.0 75.9 87.8 
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Fig. 6 Comparison of concentric-sphere correlations with mapped 
eccentric-sphere data for individual fluids 

inclined by utilizing equations of the form 

keff/k = 1'RaL' (11) 

The empirical constants which they obtained for this equation 
are given in Table 3 together with a comparison of the deviations 
for concentric and mapped eccentric spheres. These equations 
are shown plotted with the mapped eccentric data in Fig. 6. 

From Fig. 6 it is evident that no single equation of the form of 
equation (11) will suitably correlate the data for all of the test 
fluids. However, it was found by Scanlan et al. [5] that all of 
their concentric-sphere data could be correlated satisfactorily by 
the equation 

with all average deviation of 13.7 percent, while a comparison of 
the mapped eccentric data with this equation indicates an average 
deviation of 15.6 percent. 

The exponent on Prandtl number in equation (12) is extremely 
small, while the exponents on Rayleigh number and gap-radius 
ratio are nearly equal. Thus Scanlan et al. [5] found that all 
their concentric-sphere data could be correlated by the single 
equation 

keff/k = 0.228(Ra *)0.226 (13) 

with an average deviation of 15.6 percent, while 76 percent of the 
data were within ± 20 percent of values predicted by the equation. 
The Rayleigh number utilized in equation (13) is a modified form 
of the Rayleigh number defined as the product of RaL and L/Ri. 
Equat.ion (13) is shown plotted with the mapped eccentric data 
in Fig. 7, and an error analysis indicated that these data are 
represented to within an average deviation of 18.2 percent by 
equa.tion (13), while 67.6 percent of the data are within ±20 per
cent of the values predicted by the equation. 
It is significant to note from the foregoing results that all of 

Table 3 Empirical constants and deviations for equation (11) 
for eccentric and concentric spheres 

Fluid Water 20 CS 350 CS 

l' 0.033 0.031 0.056 
1; 

Average % deviation 
0.328 0.353 0.330 

(concentric spheres) 15.7 7.1 6.5 
AVerage % deviation 

(eccentric spheres) 16.7 13.9 10.6 
% of data within ±20% 

of equation (concentric 
spheres) 71.4 98.6 98.6 

% of data within ±20% 
of equation (eccentric 
spheres) 63.7 75.9 86.4 

JOurnal of H eat Transfer 

100 .. 0 r-~~~~"""'T-~"'""'--""~~~~"-~~c~-~' ~~~ 

,l o HATER 
o 20CS FLUID 
6 350CS FLUID 

10.0 r-----t----+---i-----+--:---,-~~~''-''o~,2 .. ~ 

1 
1 

HDDIFIED RAYLEIGH NO .• Ra >'< 

Fig. 7 Compari~on of overall concentric-sphere correlation with mapped 
eccentric-sphere data 

the empirical equations which have previously been utilized for 
predicting heat-transfer rates by natural convection between 
concentric spheres can also be used to predict natural-convection 
heat-transfer rates between eccentric spheres with reasonable ac
curacy if the actual inner-sphere radius is merely replaced with 
that obtained from the conformal mapping, equation (7). In the 
nomenclature of the current paper, these equations can be written 
as 

(14a) 

where the constants and ranges of validity are shown in Table 4. 
The equation fitting all of the data is given by 

/Ceff/k = 0.228(Ra*)0.226 (14b) 

for 1.2 X 102 < Ra * < 1.1 X 109 and 0.7 < PI' < 4148. All of 
the foregoing equations are restricted to 0.09 ::; (1'0 - 1'i)/r; ::; 
1.81, -0.75 ::; e/(1'o - 1';) ::; 0.75, and fluid properties evaluated 
at T",. As in [5] the use of the overall equation (14b) is recom
mended in cases where the other equations (14a) are not specifi
cally applicable. 

Conclusion 
This paper presents the results of an experimental investiga

tion of natural convection between eccentric spheres, where the 
eccentricity is parallel to the gravity vector. Water and two 
silicone oils were utilized as the test fluids for four combinations 
of sphere sizes and for six values of the eccentricity ratio for each 
of these sphere combinations. Information regarding both heat
transfer rates and temperature distributions is presented. 

Temperature distributions are presented, and as would prob
ably be expected it was found that a negative (downward) eccen
tricity tends to enhance the convective motion in the space be
tween the spheres, while a positive eccentricity produces a 
tendency toward pure conduction, although this situation was 
certainly never fully achieved. As in the case of concentric 
spheres the thermal map was observed to be relatively indepen
dent of temperature difference between the two spheres. Tem
perature inversions, believed to be caused by the high rate of 
angular convection of heat relative to the radial transport, were 
observed for a variety of test conditions. The multicellular flow 
pattern which has previously been postulated to explain the tem
perature distribution between concentric spheres with a small 
gap spacing was also found to yield a plausible explanation for 
the thermal field obtained using the largest inner sphere con
sidered in the current investigation. 

Table 4 Heat-transfer correlation equations for individual fluids 

Prmin Prmax RaL min RaL max l' 1; 

0.7 0.7 1.4 X 10' 2.5 X 106 0.117 0.276 
4.7 12.1 2.4 X 10' 5.4 X lOB 0.033 0.328 

148 336 2.4 X 10' 9.7 X 107 0.031 0.353 
1954 4148 1.3 X 103 5.6 X 106 0.056 0.330 
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A (!onfol'lnal-rnapping teehnique was developed to t.ransform 
the ecccntric spheres 1,0 (!ollecntrie Hpheres, and it was found that 
the empirical equations previously (Ieveloped for concentric 
spheres (!oulrl be used to predi(!t the heat transfer in the mappcd 
ec(!entrie spheres even t.hough the governing differential equations 
may not have been transformed in an invariant mannel·. In the 
t.!'ansfol'lnation the oULer-sphern diameter was invariant., while 
the inner-sphere diamder was (!hltllged. This mapped illner 
diameter was t.hen ut.ilized for calculating t.he refcrence t.empel'll
t.UI'(~, on whieh all fluid pl'O]1(!rt.ies were hascd, as well as the vari
ous paramct.ers whieh appeal' in the existing eorrelat.ions for COIl

r:entric spheres. Tlw applir:ation of these existing correiat·ions 
to t.he llutpped cccent.ri(!-sphere data then indical<~d that. t.hese 
equat.ions cO\lld indeed he ut.ilized for the eccentrie spheres, hot·h 
for ea(!h fluid individually and for all t.lw data comhined. It, is 
signifieant t.() note t.hat an overall heat.-t.l'It\lsfer correlation whieh 
does not involve explicit. use of PI', 1,11';, or el(ro - 1',) was ob
tained even though Inrge variations in these paramet.ers were 
considel'(!d in t.he invest igaLion. 

To the hest of the aut.hors' knowledge (he result.s descrihed 
herein represent t.he only el\l'l'ent.iy available informat.ion con
ceming natural-convection heat. (ransfer het ween eccent.ri(! 
spheres. This work eOlleent.rat.ed on ohtaining heat.-tl'llnsfer 
rfl.t.es and temperaLIll'(! profiles, fl.ud future work should he di
rect.ed t.oward a. determinat.ioll of t.he mon! detailed effeels whieh 
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occur in the flow field for wide variatiolls in the independent vari, 
fl.bles. 
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An Analysis of Laminar Free and 
Forced Convection between Finite 
Vertical Parallel Plates 
Approximate analytical solutions are presented for constant-property laminar free- and 
forced-convection flows between finite vertical parallel plates. For free convection, the 
thermal boundary conditions considered include the thermally symmetric channel with 
uniform wall temperature or step change in wall temperature and the unsymmetric 
channel with uniform hut unequal wall temperatures. For forced convection and com
bined free and forced convection, the thermally symmetric and uniform thermal boundary 
condition is considered. Where possible, results are compared with available numerical 
and experimental results. Particular attention is given to heat-transfer results, which 
cover a wide range of Rayleigh and Prandtl numbers. For combined convection the 
heat-transfer results are related to the impressed pressure difference and flow rate. 

Cc 
I Introduction 

(OMEINED free- and forced-convection flows have been 
studied extensively (see Ostrach [ l ] 1 and Chato [2] for general 
reviews), yet questions still remain to be answered on the subject. 
The present study introduces a new approximate method for 
analyzing laminar natural convection in finite vertical ducts. 
There is a need for flexible analytical methods that can provide 
good design heat-transfer information over a wide range of condi
tions. I t is intended that this new method will help to fulfill tha t 
need. In particular, the class of problems to be considered is 
that of heat transfer to a fluid between two parallel vertical heated 
plates. Fluid from constant-temperature (T„.) surroundings 
enters the channel at the bottom and discharges into the sur
roundings at the top. If a fan exists in the channel a forced-
convection flow is superimposed on the buoyancy-induced flow. 

In general a finite-length channel introduces mathematical 
difficulties which preclude the possibility of an exact solution to 
the governing equations. For this reason the limiting case of a 
Very long channel or the assumption of fully developed flow has 
been made to simplify the problem and to permit exact mathe
matical solutions. Solutions of this type, for a variety of thermal 
boundary conditions and duct cross-sectional geometries, are pre
sented in the literature by Ostrach [3-5] and other investigators 
[6-9]. These exact solutions are of limited value since the condi
tions over which they are valid are not always expressed in terms 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
°f THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manu
script received by the Heat Transfer Division February 24, 1972. 
Paper No. 72-WA/HT-3. 

of a well-defined range of parameters. To be useful these limiting 
solutions must be complemented with experimental results or 
more complete solutions arrived at numerically or approximately. 
Thus the solution for fully developed flow must be complemented 
with some information on the developing-flow problem. Indeed 
the situation of fully developed flow may never be realized in finite 
channel flow, hence a knowledge of developing flow is essential. 

Analytical studies of combined free- and forced-convection 
flows have usually treated free convection as a secondary effect. 
One early effort by Martinelli and Boelter [10] used the method 
of Leveque [11] to analyze flow in a short heated section of a long 
vertical duct. Later Rosen and Hanra t ty [12] used an approxi
mate integral method to reconsider this same problem in more 
detail. They also pointed out from experimental observations 
that the results of Martinelli and Boelter included a range of 
values where flow inversions would occur, thus curtailing the 
range of applicability of these results. Scheele and Hanrat ty [13] 
and Lawrence and Chato [14], who examined the flow-stability 
problem more closely, found that transition to turbulent flow 
always occurred following an inflection in the velocity profile. 
Although an inflection point would always be expected in pure 
free convection, the flow in their studies was dominated by forced 
convection. Recent efforts to consider free- and forced-convec
tion developing flow in a semi-infinite vertical duct include an 
approximate solution by Savkar [15] and a numerical solution by 
Zeldin and Schmidt [16]. 

The problem of developing natural convection between parallel 
plates was first studied by Elenbaas [17]. Examining air flowing 
between isothermal plates, he determined average heat-transfer 
coefficients and correlated the Nusselt number over a wide range 
of Rayleigh numbers. Sobel, Landis, and Mueller [18] experi
mentally examined the same problem except with a uniform-
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heat-flux wall condition. Using boundary-layer-type equations 
Bodoia and Osterle [19] obtained a numerical solution to Elen-
baas' problem. They imposed a uniform entrance velocity and 
matched pressure to its local hydrostatic ambient value at the 
entrance and exit of the channel. The numerical solution was 
terminated when the center-line fluid velocity reached zero [20]. 
Sanders [21] numerically solved a similar problem after introduc
ing some approximations for terms in his governing equations. 
I t is noteworthy that his heat-transfer results agree within ± 1 0 
percent with the results obtained from a slug-flow model for the 
energy equation. Novotny [22] presented fluid-temperature data 
over the first two-thirds of a channel with isothermal walls. For 
high Rayleigh numbers he found that the measured temperature 
profiles agreed with those predicted by single-vertical-plate 
theory. More recent experimental data for velocity and tem
perature in air at low Grashof numbers (0.83 < Gr* < 8.0) have 
been presented by Currie and Newman [23]. Flow-rate results 
are in good agreement with those of Bodoia and Osterle, and heat-
transfer results follow those of Elenbaas. The only previous 
analytical approach to developing natural convection between 
vertical plates was given by Engel [24] and Engel and Mueller 
[25]. Their approach consisted of an integral method followed 
with an asymptotic expansion in 1/Pr to make the equations 
tractable. Their results for average Nusselt number are com
pared to Bodoia and Osterle [20] up to Ra* = 2700 where the 
deviation reaches 16 percent. 

Additional numerical solutions have been presented for pure 
natural convection in finite vertical ducts. Dyer and Fowler 
[26] extended the work of [20] to include an initial unheated sec
tion followed by a constant-temperature-wall section. They also 
concluded that the initial velocity profile has no significant effect 
on the average heat-transfer and flow results. Dyer [27] also 
considered this problem experimentally. Dyer noticed that with 
an inlet restriction it is possible to have the flow from the bottom 
channel entrance supplemented by an open-thermosiphon effect 
at the top exit. Kageyama and Izumi [28] solved the vertical-
circular-duct problem by a numerical technique for the wall con
ditions of constant temperature and constant heat flux. 

The lack of analytical work done on developing natural convec
tion in ducts motivated the present study. A method more flexi
ble than the alternative integral method was sought. Further

more, all previous2 formulations of this problem specified a hy
drostatic ambient pressure at the channel entrance, while the 
actual pressure must be lower since the fluid has been accelerated 
from rest. The possible importance of this factor also deserves 
investigation. 

The present method is based upon a slug-flow linearization of 
the governing equations. This method has been used with suc
cess by Targ [30], Sparrow etal . [31-32], and Williams [33] for the 
isothermal-entrance-region problem. I t is expected that it will 
be appropriate for the natural-convection case since it is accurate 
at large Reynolds numbers, corresponds to Sanders' results with 
the slug-flow energy equation, and reflects the unimportance of 
the momentum convective terms found by Engel and Mueller. 

All problems considered will have a uniform channel wall 
temperature, except that a step change in wall temperature from 
an unheated to a heated wall condition and different temperatures 
at both walls will also be examined. In all cases the approximate 
solutions derived for small Rayleigh numbers converge to the: 
exact fully developed solutions. 

II Governing Equations 
The governing equations for two-dimensional steady flow in 

channels have been well established and will not be derived here, 
A rigorous derivation is available in [36]. Basically, the Bous-
sinesq assumption has been introduced, boundary-layer flow 
applies, and all properties are constant but evaluated at an ap
propriate temperature [34]. For the system shown in Fig. 1 the 
dimensionless groups 8, u, v, x, y, Gr, and Pr as defined in the 
nomenclature yield the governing set of equations in terms of 
dimensionless variables as 

Continuity 

X-momentum 

die 

£>x 

dv 

Z>y 
= 0 

u — + v — = 
dx oy + dy2 

dp, 

dx 

(la) 

(16)' 

2 Very recent work presented by Aihara [29] has investigated this 
factor in a numerical solution. 

•Nomenclature-

a = 
b = 

9 = 

Gr = 

Gr* = 

h(X) = 

k = 
L = 

LH = 
Nu = 

Nu* = 
p» = 

Vw = 

P = 
P , = 
Pr = 

g«(Z) = 

channel width 
channel half-width, b = a/2 
specific heat at constant pressure 
gravitational body force per 

unit mass 
Grashof number, &4£r/3(T„, — 

Ta)/Lv* 
Grashof number, o4^/3(r„ — 

Ta)/Lvs 

average heat-transfer coefficient 
up to position X defined in 
equation (20) 

thermal conductivity 
channel length 
heated channel length 
Nusselt number, hb/k 
Nusselt number, ha/k 
dimensionless pressure defect, 

PV/PJJR* 

dimensionless initial pressure de
fect, PJ>*/PaL'a' 

pressure 
pressure defect, p + p„gX 
Prandt l number, v/a 
heat flux from wall to fluid at 

position X 

T 

Mo 

u 

UR 

VR 

Ra = Rayleigh number, GrPr y = 
Ra* = Rayleigh number, Gr*Pr 

= temperature a = 
= dimensionless vertical velocity an — 

component, V/UR fl = 
= Graetz number, (Uob/v) Pr 

{b/L) 
= vertical velocity component fin = 
= reference velocity, see sections y = 

II , IIIA, b*gff(T„ - TJ/v 
= reference velocity, see section 

I I IB , a*gP(Tw - T„)/v sn = 
= dimensionless horizontal veloc- £ = 

ity component, see section 
IIIA, VL/bUR 

= dimensionless horizontal veloc- v = 

ity component, see section g — 
I I IB , VL/aUR 

— horizontal velocity component p = 

= dimensionless vertical coordi
nate, X/L Subscripts 

= vertical coordinate, horizontal 0 = 
coordinate 

= dimensionless horizontal coordi- 1 = 
nate, see sections I I , IIIA, co = 
Y/b w = 

V 

X, Y 

V 

dimensionless horizontal coordi
nate, see section I I IB , Y/a 

thermal diffusivity 
defined by equation (12) 
coefficient of volume expansion, 

P\STJP 
defined by equation (13) 
dimensionless cold-wall temper

ature, (Tm - T„)/{Tm -
TJ 

defined by equation (26) 
dimensionless independent van-

able, see section IIIA, x/t/oGr, 
section I I IB, x/U0Gr* 

kinematic viscosity 
dimensionless temperature, (" 

- T„)/(TKmm - Ta) 
density 

initial condition or hot wall in 
section I I I B 

cold wall in section I I IB 
ambient condition 
wall condition 
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Fig. 1 Channel coordinate system 

7-momentum 

Energy 

dp, 

by 
= 0 

b0 b6 
u — -f- v — 

da; by 

1 d*6 

GrPr dy2 

(lc) 

(Id) 

The wall boundary conditions considered are zero velocity and 
prescribed surface temperature. The conditions at x = 0 are 
more difficult. Here it is assumed that both the temperature and 
the velocity are constant, with values T«, and C/0 respectively. 
The assumption of constant velocity is best justified by the results 
of Dyer and Fowler [26]. I t is also necessary to specify the 
pressure at x = 0. In all other theoretical studies [19, 20, 24-28] 
the pressure defect Pv was taken to be zero at the inlet, neglecting 
the acceleration of the fluid to the channel inlet. The correct 
initial condition, given by application of Bernoulli's equation, 
should be 

P„ = -
pJJJ 

(2) 

The effect of this condition on the results will be considered in the 
examples below. At the channel exit the pressure defect has been 
specified as zero, i.e., 

P „ . = 0 at X (3) 

which is in agreement with previous theoretical studies and corre
sponds to parallel streamlines in the emerging flow. This con
dition is required to establish a value for the inlet flow which is a 
dependent quantity. 

Finally, an integral continuity condition, from equation ( la) 
Mid wall boundary conditions, 

/ : 
UdY = 2bU0 (4) 

is added. This additional equation becomes mathematically 
necessary because the j/-momentum equation has been essentially 
diminated. Equation (4) with (la), (lb), and (Id) provides four 
•ndependent relationships to allow determination of the four 
-unknown variables u} v, PV} and 9. 

Ill Approximate Method and Examples 
A Symmetrically Heated Channel with Specified Wall Temperature, 

j ' n this section, the method of solution will be developed and ap
plied to the problem of a symmetrically heated channel with a 

|oiirnal of Heat Transfer 

prescribed wall temperature. The coordinate system of Fig. 1 
applies as well as equations (1) and (4). To arrive at a tractable 
problem, the energy and momentum convective terms will be 
linearized as follows: 

b b b 
u \- v — = «o — 

bx dy bx 
(5) 

where u0 is the dimensionless entrance velocity which must later 
be determined from the solution. By introducing a new inde
pendent variable £ = x/u0Gr the linearized governing equations 
become 
X-momentum 

bu b2u 1 dp,, 

d£ dy2 wo d!j 

Energy 

Mass balance 

Pr 
b6 _ 5*0 

bf ~ by" 

I udy = Uo 
Jo 

The constraint conditions required by (6) are 

(6a) 

(66) 

(6c) 

x = 0: 

x = 1: 

y = 0: 

V = 1: 

u = Uo 

Pv = 0 

bu 
— = 0 
by 

u = 0 

e = o p . 

be 
— = o 
by 

9 = / ($) 

= PvO (7a) 

(76) 

(7c) 

(Id) 

In the following analysis various values of pn will be considered. 
Setting pvo = 0 conforms to previous works [19, 20, 24-28] and 
permits a comparison of results. Setting p,v — — Wo3/2 follows 
from equation (2) as the correct condition for pure free convec
tion. Finally, setting pn above its corresponding free-convection 
value results in combined free and forced convection. 

Although the governing equations have been linearized the 
solution is not straightforward. Using Laplace transforms [36] 
in the solution procedure it still is necessary to introduce specific 
wall temperature functions /(£). Although general variations in 
the wall temperature could be considered, results are presented 
here for only two examples, a uniform wall temperature and a 
step change in the wall temperature. 

For the uniform wall temperature 

M) = i 
and for the step change 

[0 £ < & = Lo/L Gr «„ 
M) £ > & 

(8) 

(9) 

The solution for each case follows, with intermediate details 
shown in [36]. 

Constant-Wall-Temperature Case 

00 f _ i y . -Me 
0(f, V) = 1 + 2 E ^ r 1 c P r cos (/3„2/) (10a) 

P»(g) - PVO 

Uo 

+ £ - - P r 

— Uo 

+ 

( 3 £ + i ) - 2 | , 
e-cn^ 

(Pr - 1) E 
-anH 

o v 

tan (an \ / P r ) 
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x «-<•»•« - Y, 
' Pn_ t a l l / M l 
.VPr an\\/Pr/J] 

(106) 

. ( f i y , - « . i | ( i - v - ) - 2 f ; ^ r i - ? ^ l l 
(2 ^ a„2 L cos (a„) J j 

(Pr - 1) \t[ 
\n=l L. 

tan(VPr a„) 1 _ c o s («i»i/)"[ 
cos (an) J 

7 1 = 1 

VPre 

ft,3 

ft.2, 
Pr * 

ft 

/ ft. \~ 
COS 1 ~ T = 2/ 1 

VVPr V 
ft. 

COS — 7 = 

VPr _ , ft, 1 _ — tan ,— Pr -v/PrJ 

+ V Pf(-l)"e P r cosfc;/)! c 

»=i ft.3 

Srep-Change-in-Wall-Temperature Case 

«(f, v) = u(f - &) 1 + 2 t ^ V ^ 
ft. 

cos (ft,?/) (11) 

The solutions for « and p„ are lengthy, and have been omitted in 
the interest of brevity. The interested reader is referred to [36]. 
a„ and ft, are given by 

an = tan (a„) n = 1, 2, . .. 

where a„ ^ 0, and 

« - ( ^ ) * 
w = 1, 2, .. . 

(12) 

(13) 

In order to complete the solution the parameter u0 must be de
termined as a function of independent parameters. This is ac
complished by applying condition (76) to equations (106) and 
(116). An explicit solution for ua is not possible, but it is conve
nient to introduce 

Mo' = MoRa 

which permits an explicit solution for Ra, i.e., 

Ra = R a (»'-p'.if) (14) 

The quantity u0' is in fact the Graetz number, represented in this 
case as 

-G) (? ) (Pr) (15) 

To improve upon the linearized solution an alternative method 
will be used to determine the u0 relationship. From the original 
governing equations (I) the momentum equation can be inte
grated over the channel half-width and combined with the con
tinuity equation to yield 

dx G 
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(16) 

Further integration from 0 to x results in 

O 2 M ' 
Vv(x) 

p^^£f0(
d+Wdydx+u"-£ Wdv 

(11) 

This relationship, which is exact, represents an alternative 
method for determining the pressure where the terms on the right, 
hand side can be evaluated from the linearized solution, e.g. 
equations (10) or (11). A corresponding relationship derived 
from the linearized momentum equation is 

pv(x) - p.. 
i rx r i / &u\ 

dydx (18) 

Letting p„ denote the solution obtained by using equation (17) 
and letting all other terms denote the linearized solution, it can 
be seen tha t 

v(x) = Pv(x) + Uo'' 
Jo 

vMy (19) 

The inlet velocity uo can now be determined from the results of 
equation (19). These results for p„ and u0 will be referred to as 
the "iterative solution" as opposed to the "linear solution" given 
by equation (106). 

A similar procedure will be used to obtain heat-transfer results. 
The average Nusselt number up to any location X is defined as 

Nu* = 
bh(x) f 

Jo 

qm(X)dX 

h L„(TW - r „ ) Jo w A - i 

For the entire channel length 

N u s e - = — 
k LH 

Thus 

Nu = Nu 

J o \dy/v=i 

(R.,p„f) 

dx 

dx (20) 

(21) 

(22) 

can be determined from the "linear solution". This may be im
proved by accounting for the nonlinear conyective terms by 
integrating the energy equation (1) over the channel half-width 
and then over the length of the channel. I t follows from equation 
(21) tha t 

*"-(h)™£ (ud)x^dy (23) 

Equation (23) constitutes an alternative method for deriving 
relationship (22), and will again be referred to as the "iterative 
solution" for Nu. The integrals in equations (19) and (23) are 
easily evaluated numerically and are presented in graphical form. 

B Unsymmetrically Heated Channel with Specified Wall Temperature. 
Here the thermal boundary conditions of uniform, bu t unequal, 
wall temperatures are selected for illustration with the constraint 
tha t Ta > T„. As before, a uniform inlet velocity will be pre
scribed. 

The notation used in this section is identical to tha t of section A 
except tha t the reference frame is shifted so tha t y is measured 
from one of the walls (see Fig. 1) and the full channel width a = 
26 is used in place of 6 as the reference length. 

The governing equations remain as equations (6) with £ = 

a;/[/0Gr* and Gr* = g/3(Tw - T^a'/Lv2. The constraint con
ditions at x = 0 and x = 1 remain as equations (7a) and (7ii)' 
At the walls the new conditions are 

y = 0: u - 0 = 1 (24a) 

and 

Transactions of the AS ME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 2 Nusselt number as a function of Rayleigh number for the symmetric channel; 
(a) comparison of analytical with experimental results, (b) comparison of analytical with 
numerical results, (c) Prandtl-number effect, (d) effect of unhealed entrance length 

1: u = 0 = 7 (0 < y < 1) (246) 

The solution, obtained by the application of Laplace trans
forms, becomes 

V , 

{, V) = (T - 1)2/ + 1 + 2 £ ~ 
On » - l 

X {y sin (5„i/) + sin [5„(1 - y)]\ (25) 

with a„ and /?„ given by equations (12) and (13), respectively, 
where 

S„ = rnr n = 1, 2, . . (26) 

«o is determined by the integral-equation method as given in 
equation (19). The heat-transfer results are evaluated as 

Nu0 Jo \<>?/A-
dx = 

h0a 

and 

Nui* = 
Jo \&?/A-i ' ' 

(27a) 

(276) 

Here again the u and p„ results have been omitted for brevity, 
; cf, [36]. 

IV Results and Discussion 
•". In order to assess the accuracy of the present solution, the 
; results were first compared with existing numerical solutions using 
the compatible zero inlet pressure defect. Experimental results 

i were compared for both inlet pressure conditions, and solutions 
I were generated for the non-zero pressure condition [36]. Some 
| °f these results will be presented here. 
i] For pure free convection with constant wall temperature a 
Comparison with the numerical solution of Bodoia and Osterle 

is given in Fig. 2(6) for average Nusselt numbers. The 
' iterative solution" does agree very closely with the numerical 

So'ution except at moderate Rayleigh numbers where it exceeds 
"le numerical result by approximately 5 percent. Apparently the 
•'erative procedure which attempts to account for the nonlinear 
c°nvective terms is successful in improving the approximate 
s°lution at high Rayleigh numbers. The "linear solution," while 
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Fig. 3 Dimensionless velocity as a function of position for a step-heated 
symmetrical channel, LH/L = 0.2, Pr = 0.70, Ra = 7218,p»o = — "o2/2 

maintaining the proper solution character, does overestimate 
the numerical result by 20 percent at most. In addition, com
parison of local results with Bodoia and Osterle [19] (only avail
able at a very low Rayleigh number) displayed excellent agree
ment with the present results [36]. 

The effect of the inlet pressure defect on the results is displayed 
in Fig. 2(a) along with the experimental results of Elenbaas [17]. 
Two factors should be pointed out in comparing the results to 
the data of Elenbaas. Firstly, the data are for square plates 
open at the sides, which introduces a three-dimensional edge ef
fect. Secondly, the fluid properties essentially were evaluated 
at the wall temperature. Correcting for the edge effect [18] 
and evaluating properties at the average temperature [19] result 
in a downward shift of the data in the low-Rayleigh-number 
range. Hence, overall, the iterative solution for the non-zero 
inlet pressure condition best satisfies the data. Recent numerical 
results by Aihara [29] (not shown) appear to be at most 5 percent 
below this iterative solution for non-zero pressure defect. The 
upward inflection of this curve beyond Ra* = 104 must be looked 
upon as a possible weakness of the present method. Finally, 
it is recognized that the inlet pressure condition does have a 
significant effect on the heat-transfer results above Ra* = 10. 

The average Nusselt-number results for the unheated-entrance-
length example are shown in Fig. 2(d) with Rayleigh number 
based on heated length LH. Where comparison could be made 
with the numerical results (for p„ = 0) of Dyer and Fowler, the 
approximate solution was found to agree within 2 percent- [36]. 
Figure 3 shows local velocity variations for one set of conditions 
when heating occurs only for the last fifth of the channel length 
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Fig. 4 Nusselt number as a function of Graetz and Rayleigh numbers for 
combined free and forced convection in the fully heated symmetrical 
channel 
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Fig. 5 Dimensionless pressure defect as a function of Graetz and Ray
leigh numbers for combined free and forced convection in the fully heated 
symmetrical channel 

(x > 0.8). In the unheated section the flow approaches the 
fully developed state as indicated by the parabolic profile shape. 
The temperature of the short heated section is sufficient to cause 
a rapid distortion in this flow as indicated by its boundary-la3'er-
like character. Not only does this figure dramatize the effect of 
the interacting mechanisms occurring, it also illustrates the 
ability of this solution technique to cope with such drastic changes 
in the flow pattern. 

Figure 2(c) displays the effect of Prandtl number oh the results 
for a uniformly heated channel. Although an extensive probe 
was not made for the effect of Pr, it is observed that heat-transfer 
coefficients for most gases and liquids will be weakly affected by 
Pr, whereas the effect of Pr will be significant for liquid metals. 

Calculations for the Graetz flow parameter ua' produced an 
unexpected maximum value as Ra was increased for pm = 
— Mo2/2. (No maximum occurred for the p„ = 0 case.) For 
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Fig. 6 Nusselt number as a function of Rayleigh number for the unsym« 
metrically healed uniform-temperature channel; (a) cold wa l l , (b) hoi 
w a l l 

example this occurred at approximately Ra = 2500 for the 
uniformly heated channel. I t was discovered that when this 
maximum flow occurred the velocity profile indicated the be-" 
ginning of downward flow at the center of the channel exit. 
Since boundary-layer-type equations would not be valid for this 
flow behavior, no solution results were presented beyond the 
"critical" Rayleigh number corresponding to the flow maximum, 
It is interesting to speculate about the physical significance of-
this flow behavior. Previous studies in free-forced convection-
[12-14] observed that flow inversions or inflections in the velocity 
profile do precede turbulent flow. Also, Dyer [27] noticed that 
for restricted channel entrances flow reversals did occur at the 
channel exit under certain conditions. I t is not known whether 
this predicted flow pattern is a result of the assumptions con
tained in the present method or is a result of physical mechanisms 
indicating the limit of laminar boundary flow. 

When the inlet pressure is arbitrarily specified the problem be
comes that of combined free and forced convection. For this 
case, Fig. 4 displays the Nusselt number and Fig. 5 the initial 
pressure as functions of the Graetz and Rayleigh numbers. The 
latter figure is useful in selecting a proper fan for cooling purposes 
since the required fan pressure increase is given by 

LXI fan — -*%() ~T 
PcoW 

(*-' + T ) 
In Fig. 4 the numerical solution for pure forced convection of 
Mercer et al. [35] is at most 13 percent above the present result* 
at high uo'; however, they report that their results exceed the 
results of others by 7 percent. 

Figure 6 displays the average free-convection Nusselt number 
for the hot and cold walls of the unsymmetric-heating case. 
Although no other results exist for this case to permit a check of 
the solution, they possess the proper physical behavior and do 
converge to the exact solution for the case of fully developed flow 
(Ra - • 0). Since the Nusselt number is defined as positive for 
heat transfer from the wall, at low Rayleigh numbers the cold 
wall actually receives heat from the fluid and a negative Nusselt 
number results. 

V Conclusions 
I t has been demonstrated that the present method leads to 

accurate results for a number of examples over a wide range ot, 
conditions. The technique should also be useful in other cases, 
especially when overall heat-transfer results are desired. Finalr/i 
the effect of the pressure inlet condition has been examined an 
has been found to have a significant effect on heat transfer an 
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gow behavior at high Rayleigh numbers. The signifioance of 
the predicted flow-inversion phenomenon and its possible relation 
to turbulence should be examined in future studies. 
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A Numerical Study of Laminar Combined 
Convective Flow over Flat Plates 
The boundary-layer equations for combined forced- and free-convective flow over flat 
plates have been numerically solved using a simple implicit finite-difference scheme. 
The method of analysis has been developed for flow over plates for which either the sur
face temperature distribution or the surface heat-flux distribution is arbitrarily speci
fied. Both assisting flow, in which the longitudinal component of the buoyancy force 
is in the same direction as the forced flow, and opposing flow, in which it is opposite in 
direction to the forced flow, have been considered. Numerical results have been obtained 
for plates having a uniform temperature and a uniform heat-flux distribution, and for 
fluids with Prandtl numbers of 0.7, 3, and 10. 

Introduction 

IN STUDYING fluid flow over heated surfaces it is 
usual to neglect the effects of the buoyancy forces when a forced 
velocity exists. Under some circumstances, however, such an 
assumption is not justifiable, the buoyancy forces considerably 
modifying the flow field and hence the heat-transfer rate from 
the surface despite the presence of the forced velocity. Such 
flows are termed combined, or mixed forced- and free-convective 
flows. The present note describes a numerical study of such 
combined convective flow over a flat surface aligned with the 
forced flow. Both the case where the surface temperature is 
specified and the case where the surface heat flux is specified 
are considered. 

Several analytical studies of combined convective flow over 
vertical plane surfaces with a uniform surface temperature are 
available. Sparrow and Gregg [ l ] 1 and Szewczyk [2] derived 
series solutions about the purely forced-convective solution in 
terms of a parameter characterizing the relative importance 
of the buoyancy forces. These solutions are only applicable 
when the buoyancy effects are small. Merkin [3] obtained a 
complete solution to the problem for a Prandt l number of 1 by 
using a combination series expansion and numerical solution. 
Attempts have also been made to analyze the problem using 
integral-equation methods [4, 5] but it can be shown that the 
accuracy of these analyses must be in doubt. Lloyd and Sparrow 
[6] analyzed the assisting-flow case, i.e., where the buoyancy 
forces are in the same direction as the forced flow, using a local-
similarity method. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
of THE AMEBICAN SOCIETY OP MECHANICAL ENGINEEBS. Manuscript 
received by the Heat Transfer Division October 19, 1971. Paper 
No. 72-WA/HT-4. 

Analysis 
The present study is concerned with combined convective 

flow over a plate which is set at an angle c/> to the vertical, with 
the forced How parallel to the surface of the plate. The analysis 
is based on the use of the boundary-layer equations, it being 
assumed that the fluid properties are constant except for the 
density change with temperature which leads, as a result of the 
gravitational potential, to the buoyancy force. In order to 
obtain results in as general a way as possible, these boundary-
layer equations are expressed in terms of suitable dimensionless 
variables. Separate schemes are used for the cases where the 
surface temperature and where the surface heat flux are specified. 

Consider first the case of flow over a plate with a specified 
surface temperature distribution. Using the set of dimension-
less variables denoted by a bar, these being essentially the same 
as those used in the integral-equation analysis of [4], the bound
ary-layer equations become 

bu bv 
(. — = o 

bx by 
_ bu _ bu b2u -

bx by by2 

bT bT 1 b*T 
u — + v — = 

bx by Pr by1 

(1) 

(2) 

(3) 

The ± sign on the buoyancy term in equation (2) arises be
cause of the way in which G is defined. The upper sign applies 
in assisting flow, i.e., where the longitudinal component of the 
buoyancy force is in the same direction as the forced velocity, 
while the lower sign applies in opposing flow. 

In terms of the dimensionless variables, the boundary condi
tions on this set of equations are 

0: = v = 0 Tw = Tw(x) (4) 
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%"* 

where 

Fig> I Heat-transfer results for assisting and opposing flow over a uni-
form-temperature surface 

V large: r-*o 
where 

Tw (Tw - T,)/(Tv,r - TO (5) 

is a known function of x, Tw being the local wall temperature. 
Equations (1), (2), and (3) constitute the set of three equations 

m the three variables u, S, and T which must be solved in the 
specified-surface-temperature case. 

Next consider the case of flow over a plate with a specified 
surface heat-flux distribution. In this case the set of variables 
denoted by an asterisk is used. In terms of these variables the 
boundary-layer equations become 

3 bu* bv* y* bu* 

2 dx* by* 4a;* by* 

3 „, bu' 
— « * — ; 
2 bx* 

bu* u*y* bu* 
+ v* 1 

by* 4a;* by 

= 0 

d2«* 

bT* u*T* 

dz* 2x* + v-
bT* 

~by~* 

by** 

« y a f _ 
4z* by* 

± T* 

1 b'T* 

¥r by*1 

(6) 

(7) 

(8) 

The upper and lower signs on the buoyancy term in equation 
(7) again apply in assisting and opposing flow respectively. 

In terms of the dimensionless variables, the boundary condi
tions become 

V 0: u* 

y* large: 

0 qw* = Qw*(x*) 

T* -+0 

(9) 

qw/qw (10) 

is a known function of x*, qw being the local heat-transfer rate 
from the surface. 

The wall boundary condition on heat transfer is utilized in ob
taining the solution for T* by noting that 

a * = - T * 1 / : 
bT* 

by* 
(11) 

Therefore an alternative way of expressing the wall boundary 
condition on heat flux is 

V = 0: -bT*/by* = qw*(x*)/x*l/' (12) 

Equations (6), (7), and (8) constitute the set of three governing 
equations in the three variables u*, v*, and T* in the specified-
surface-heat-flux case. 

The above sets of simultaneous partial differential equations 
have been solved using a forward-marching implicit finite-
difference scheme. The scheme used is very straightforward 
and details will not be given here since it has been described in 
detail elsewhere [7]. 

I t should be noted that since x and x* depend on the longi
tudinal component of the buoyancy force, they both become 
zero when r/> is 90 deg, i.e., when the plate is horizontal. Of 
course at all values of 0 except zero there is in fact a component 
of the buoyancy force at right angles to the surface which leads 
to a pressure change across the boundary layer and a consequent 
pressure gradient along the plate within the boundary layer. 
At c/> equal to 90 deg this is the only effect of the buoyancy force 
on the flow. The effects of this normal component were con
sidered in [7] where it was shown that its effect will in most 
circumstances be important only relative to the effect of the 
longitudinal component when r/> is very close to 90 deg and at 
Reynolds numbers tha t are much lower than those at which the 
longitudinal component of the buoyancy force becomes important 
at angles of r/> different from 90 deg. For these reasons the 
effect of the normal component of the buoyancy force was not 
considered in the present work. 

Results and Discussion 
The sets of equations presented above apply when either the 

wall temperature distribution or the wall heat-flux distribution 
is arbitrarily prescribed. However, calculations - have been 
carried out only for the uniform-wall-temperature and uniform-
wall-heat-flux cases, i.e., for Tw = 1 and qw* = 1. The main 
results have been obtained for Prandtl numbers of 0.7, 3, and 10. 

The predicted variation of Nz/Rx^2 with x for the uniform-
temperature case for the three Prandtl numbers is shown in 
Fig. 1. Also shown are curves giving the solutions for the limit-
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Ty — free-stream temperature 
Tw = wall temperature 

Twr = reference wall temperature 
T = (T - r,)/(r„r - T,) 

T* = {T - T^hR^/q^x 
u — velocity component in x direction 

Ui = free-stream velocity 
u = u/ui 

u* = u/ui = u 
v — velocity component in y direction 

v R3'' v R*'-1 

Mi X1/* Ui x'1 

- ( 
Ux \ 

Rx 

(7*x^ Ml X 
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x = coordinate measured along sur
face 

x = xQ/R1 = GJRJ 
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y = coordinate measured normal to 

surface 
y = y(G/R)'/' = (yR^'/x)x^ 

V 
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X X 

P = coefficient of cubical expansion 
v = kinematic viscosity 
p = density 

4> = angle relative to vertical 
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PR = 0.7 
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Fig. 2 Comparison of present results for assisting flow over an iso
thermal surface with some previous analytical results 

ing cases of purely forced and purely free convection. The 
forced-convection solution has the form 

NJR*1/' = F0 (13) 

where Ft, is a function of the Prandt l number alone, whose values 
can be deduced from [8], for example. The free-convection 
solution has the form 

NJG^1 = Fr (14) 

where Fr is also a function of the Prandtl number alone, whose 
values can be deduced from [9]. For the present purposes 
equation (14) is of course rewritten as 

Nx/Rx
1^ = Frx1/' (15) 

In assisting flow the results show tha t at small values of x 
the heat-transfer rate tends to tha t given by the purely forced-
convection equation, while at large values of x it tends to that 
given by the purely free-convection equation. 

In opposing flow it will be seen tha t at small values of x the 
heat-transfer rate tends, of course, to the forced-convection value 
given by equation (13). However, a t large values of x in op
posing flow there must exist a buoyancy-force-controlled flow 
adjacent to the surface which is in the opposite direction to the 
outer forced flow. At small values of x, however, the entire flow 
is in the direction of the forced velocity. Thus in opposing 
flow there exists what is effectively a separation point at which 
the reversed flow first occurs. The present analysis, which is 
based on a forward-marching solution of the boundary-layer 
equation, cannot be applied beyond this "separation" point, 
and the calculations were therefore terminated at this point 
where the wall shearing stress becomes zero. 

As discussed in the Introduction, several analyses of combined 
convective flow over a vertical isothermal surface are available. 
The present results have therefore been compared with the re
sults of some of these analyses in Pig. 2. The series solution of 
Szewczyk [2] only applies at small values of x where it is in good 
agreement with the present results. Lloyd and Sparrow's [6] 
results cover a wider range of values of * and throughout this 
range are in excellent agreement with the present results. A 
comparison with the complete solution for a Prandtl number of 
1 given by Merkin [3] is also shown. The agreement is very 
good. 

Results for the uniform-surface-heat-flux case, for a range of 
variables similar to those considered for the uniform-surface-
temperature case, are given in Fig. 3. These results exhibit 

'rn! 

Fig. 3 Heat-transfer results for assisting and opposing flow over a $U). 
face with a uniform heat-transfer rate 

Fig. 4 Comparison of results for assisting flow over surfaces with a uni
form temperature and a uniform heat-transfer rate 

the same basic features as those for the uniform-surface-tempeva-
ture case which were discussed above. The limiting solution 
for purely forced convection which has the form 

Nx/Rx^> = Foq (16! 

where Foq is a function of the Prandtl number alone and whose 
value can be deduced from [8], is shown in Fig. 3. The limiting 
solution for purely free convection is also given in the figure. It 
can be arranged in the form 

Nx/Rx
1'* = Frqx*l/> (17) 

where the values of Frq, which depends on the Prandtl number 
alone, can be deduced from [10]. 

In order to compare more directly the results for the uniform-
temperature and uniform-heat-flux cases for assisting flow, an 
x based on the local value of the wall temperature can be de
fined in the uniform-heat-flux case such that 

Xi = \MT* - Ti) eos^x/m2] = xTw 
(18) 

Since in the uniform-surface-heat-flux case 

T» - Ti = Tw*qmx/kRx
l/l 

it follows that in this case 

PgTa*qwr cos <f> x' 

kvlRx'/< 
= Tm 

(19) 
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Using equation (19) the uniform-heat-flux results have been 
plotted in the form of Nx/Rx

1^ against xi in Fig. 4. The vari-
fion of Nx/Rx1^ with x for the uniform-surface-temperature 

rase has also been plotted in this figure for comparison. 

Conclusions 
A simple numerical method for analyzing combined forced-

aiid free-convective flow over a plane surface having either a 
specified surface temperature distribution or a specified surface 
heat-flux distribution has been developed. 

Results have been obtained for a range of variables that is 
wider than that covered in previous analyses of the flow over a 
vertical surface with a uniform surface temperature, and in 
addition results have been obtained for the uniform-surface-heat-
flux case. 

Acknowledgments 
The work described in the present report was part of a study 

sponsored by the McLaughlin Science Fund at Queen's University 
and the National Research Council of Canada under grant num
ber A5573. The use of computer facilities provided by Queen's 
University is also gratefully acknowledged. 

References 
1 Sparrow, E. M., and Gregg, J. L., "Buoyancy Effects in 

Forced-Convection Flow and Heat Transfer," Journal of Applied 
Mechanics, Vol. 26, TRANS. ASME, Series E, Vol. 81, No. 1, Mar. 
1959, pp. 133-i34. 

2 Szewczyk, A. A., "Combined Forced and Free-Convection 
Laminar Flow," JOURNAL OF HEAT TRANSFER, TRANS. ASME, 
Series C, Vol. 86, No. 4, Nov. 1964, pp. 501-507. 

3 Merkinj J. H., "The Effect of Buoyancy Forces on the Bound
ary-Layer Flow over a Semi-infinite Vertical Flat Plate in a Uniform 
Free Stream," Journal of Fluid Mechanics, Vol. 35, 1969, p. 439. 

4 Acrivos, A., "Combined Laminar Free- and Forced-Convec
tion Heat Transfer in External Flows," AIChE Journal, Vol. 4, 
1958, p. 285. 

5 Oosthuizen, P. H., "A Note on the Combined Free and Forced 
Convective Laminar Flow over a Vertical Isothermal Plate," South 
African Mech. Erig., Vol. 15, 1965, p. 8. 

6 Lloyd, J. R., and Sparrow, E. M., "Combined Forced and 
Free Convection Flow on Vertical Surfaces," International Journal of 
Heat and Mass Transfer, Vol. 13, 1970, p. 434. 

7 Oosthuizen, P. H., and Hart, R., "A Numerical Study of 
Laminar Combined Convective Flow over Flat Plates," Report 4/71, 
Queen's University Thermal and Fluid Sciences Group, Aug. 1971. 

8 Kays, W. M., Convective Heat and Mass Transfer, McGraw-
Hill, New York, N. Y., 1966. 

9 Ede, A. J., "Advances in Free Convection," in: Advances in 
Heat Transfer, Vol. 4, J. P. Hartnett and T. F. Irvine, eds., 
Academic, New York, N. Y., 1967, p. 6. 

10 Sparrow, E. M., and Gregg, J. L., "Laminar Free Convection 
From a Vertical Plate With Uniform Surface Heat Flux," TRANS. 
ASME, Vol. 78, 1956, pp. 435-440. 

journal of Heat Transfer FEBRUARY 1 9 7 3 / 63 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



H. MIYAZAKI 
Research Assistant' 

Department of Mechanical Engineering* 
University of Minnesota/ 

Minneapolis, Minn-

Combined Free- and Forced-Convective 
Heat Transfer and Fluid Flow in 
Rotating Curved Rectangular Tubes 
A theoretical study is presented for combined free- and forced-convective heat transfer 
and fluid flow in curved rectangular tubes rotating about an axis through the center 0/ 
curvature of the tube. The analysis is performed under the conditions that the flow is 
thermally and hydrodynamically fully developed, and the axial wall heat flux is uniform 
with a peripherally uniform wall temperature. The governing equations are solved 
numerically, and effects of the aspect ratio, radius ratio, Prandtl number, a non&imm-
sional parameter representing the effects of Coriolis forces, Grashof number, and Dean 
number on the flow and heat-transfer characteristics are presented for velocity and tem
perature distributions, streamlines and isotherms, local and mean friction factors f and 
Nusselt numbers Nu. The effects of the first two geometrical parameters are minor. 
However, an increase in the last three force parameters enhances both f and Nu greatly. 
An effect characteristic of the Coriolis forces is that they cause a great increase in}, whik 
the enhancement of Nu is much less remarkable. 

Introduction 

IN RECENT years it has become increasingly impor
tant to incorporate some cooling system into the design of rotary 
machines such as gas turbines, electric generators, motors, etc. 
An improvement in the thermal efficiency of a gas turbine can be 
effectively achieved by increasing the gas temperature at the 
inlet of the turbine. However, since the maximum temperature 
at which present-day materials for rotor blades can insure reliable 
operation of a gas-turbine plant is approximately 850 deg C, if 
the inlet gas temperature exceeds this value some cooling device 
is essential. Schmidt first proposed that this problem be solved 
by the use .of blades with holes drilled radially and filled with 
some cooling substance. It is expected that this gives an ex
tremely effective cooling because the centrifugal acceleration can 
become of the order of 104 g. Many investigations of heat trans
fer inside these thermosiphon holes have been reported. These 
investigations were, however, conducted under the earth's gravi
tational field, which differs from the rotational field in the 
presence of Coriolis forces which induce a secondary flow in a 
plane perpendicular to the main flow. 

Further, the employment of some cooling device for electric 
generators is also of great importance to protect the insulating 
materials surrounding conductors, which are usually resistant to 
a maximum temperature of 100 to 150 deg C for reliable long-

Contributed by the Heat Transfer Division for publication (with
out presentation), in the JOURNAL OF HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division August 17, 1970. Paper No. 
72-HT-N. 

range operation. As a coolant, air was first used. It was then 
replaced by pressurized hydrogen which has a larger thermal 
capacity. The cooling is effected by pumping a coolant through 
hollow passages located inside the conductors or through axial!}' 
located holes in the rotor drum. The hydrogen-cooling method 
makes it possible to construct a generator with an output of up 
to 250,000 kw compared with a maximum output of 60,000 kw 
for an air-cooled generator. Recently it has been attempted to 
employ water, which is the most efficient coolant. Water-cooled 
generators have been constructed in various countries including 
the Soviet Union and Switzerland and put into operation, al
though there are some technical difficulties encountered in seal
ing, in balancing the rotor, and in meeting strength and insula
tion requirements. It is estimated that this type of cooling i* 
capable of a maximum output of 750,000 kw. 

As a rotating geometry, many configurations can be envisaged 
according to the shape and location of cooled components, i.e., 
(a) open thermosiphon, (b) closed thermosiphon, (c) straight tube 
rotating about a parallel axis, (d) straight tube rotating about* 
perpendicular axis, and (e) rotating curved tube. The first two, 
(a) and (6), are the configurations usually utilized for the cooling 
of gas-turbine blades. The first and the last three, (a), (c), (d), 
and (e), are the configurations encountered in cooling rotor drum" 
and conductors of electric generators. 

A remarkable characteristic of the flow and heat transfer in "* 
system of rotational motion is the presence of centrifugal a"11 

Coriolis forces which induce a secondary flow in a plane perpen' 
dicular to the direction of main flow, resulting in three-dimen
sional flow and temperature fields. The secondary flow al; 
arises when a tube is curved, and enhances significantly the Vteir 
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Fig. 1 Toroidal coordinate system 

sure drops and heaf^transfer rates. In spite of the great practical 
importance and academic interest, the flow and heat transfer in 
rotating c.onfigurations have not yet been sufficiently investi
gated, and little information is available for the design. Barua 
[l]1 has reported a theoretical analysis for fully developed flow 
in a straight tube with circular cross section rotating about a per
pendicular axis, configuration (d). Morris [2] has presented the 
result of theoretical analysis for the asymptotic velocity and tem
perature distributions in configuration (c) solved by a series ex
pansion in terms of the rotational Rayleigh number. Hum
phreys, Morris, and Barrow [3] also investigated experimentally 
the local and mean heat-transfer characteristics for air flowing 
turbulently in the entrance region of a circular duct revolving 
about a parallel axis. Mori and Nakayama [4] have solved the 
same problem by Pohlhausen's method, and have presented the 
pressure-drop and heat-transfer characteristics, which hold for 
a large angular velocity. 

In contrast to the problem in a rotating system, the study of 
the flow and heat-transfer characteristics in curved stationary 
tubes has been fully made in conjunction with the application to 
heating and refrigerating plants. I t was first treated theoreti
cally by Dean [5, 6], who has solved the equations of flow by 

1 Numbers in brackets designate References at end of paper. 

perturbation and has clarified that the flow field is controlled by 
the Dean number alone. Adler [7] made extensive measure
ments of velocity distributions and found that the boundary-
layer approximation holds for large values of the Dean number. 
He also made a theoretical analysis by Pohlhausen's method, re
ferring to the results of his measurements. Barua [8] solved the 
flow field by the same method, and later Mori and Nakayama 
[9, 10] reported the results of their theoretical analyses for both 
laminar and turbulent flows which are valid for large Dean num
bers. Experimental investigations were made for turbulent 
flow and heat transfer by I to [11], Seban and McLaughlin [12], 
Rogers and Mayhew [13], and others. 

The investigation for the configuration (e) has been attempted 
by Ludwieg [14], He has solved the boundary-layer equations" 
by Pohlhausen's method for large values of the Dean number 
and rotational velocity for fully developed laminar flow in a square 
tube, and has obtained the friction factor which was verified by 
his experiment. 

The object of the present analysis is to investigate theoreti
cally the flow and heat-transfer characteristics in curved rectangu
lar tubes rotating about an axis through the center of curvature, 
configuration (e). The governing equations are approximated by 
finite-difference schemes and solved by an iterative method under 
the conditions that the flow and temperature fields are fully de
veloped and the wall heat flux is uniform with a peripherally uni
form wall temperature. The results of computations are pre
sented graphically for the temperature and velocity distributions, 
the streamlines and isotherms, and the local and mean Nusselt 
numbers and friction factors. 

Theoretical Analysis 
Figure 1 shows the coordinate system tha t is convenient in 

considering the motion of fluid through a tube of rectangular 
cross section coiled in the form of a circle. C is the axis of rota
tion, which is through the center of curvature of the circularly 
curved tube, and is perpendicular to the plane which contains 
the axis of the tube O'O. The sense of angular velocity is indi
cated by an arrow, while the fluid in the tube flows in the <p direc
tion. The figure shows the cross section of a rectangular tube cut 
by a plane perpendicular to the axis of the tube O'O. For con-
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p = density 
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6 = bulk mean 
I = local 
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s = stationary straight rectangular tube 

w = wall 
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venience of analysis the toroidal coordinate system x, y, <p is 
introduced instead of the cartesian coordinate system x', y', z'. 
The angle ip is measured from an arbitrary fixed point 0 ' on the 
axis of the tube. To facilitate the explanation, each side of the 
tube wall is termed the inner, outer, upper, or lower wall as shown 
in Fig. 1. The horizontal and vertical centerlines are also shown. 

The flow is assumed to be laminar, and with the exception of 
density the physical properties are taken to be constant. The 
axial velocity is so low that there is no energy dissipation due to 
friction, and no heat source is present within the cooling fluid. 
The gravitational force is neglected compared with the centrifugal 
force due to rotation. The rotational acceleration is ordinarily 
of the order of 103 to 104 g for the rotary machines with which we 
are concerned, so that the elimination of the gravitational-force 
term apparently causes no significant error. The detailed 
derivation of the governing equations which describe the afore
mentioned physical model is given in [15]. The equations are, 
however, essentially three-dimensional and intractable, so we 
simplify them by assuming that the flow is both thermally and 
hydrodynamically fully developed. The pressure gradient in the 
axial direction is constant, i.e., bp/bs = — Ci. For the constant 
wall heat flux per unit length of tube considered here, the axial 
temperature gradient is also constant, i.e., bt/bs = C%. 

Further, we must incorporate the buoyancy-force term. If 
the fluid density is constant, the centrifugal force does not make 
any contribution to the motion of the fluid, since it is balanced 
by a pressure gradient in the x direction. If, however, there is a 
density gradient owing to temperature variation, the centrifugal 
force becomes locally nonuniform and gives rise to a fluid motion 
in the form of a buoyancy force. The density variation is usually 
small enough to be ignored in all terms except in the term of the 
buoyancy force. It varies approximately linearly with tem
perature as 

= Pm + PwP(tm - t) « p„ + p/3(<„ - t) (1) 

since p„ » p. Strictly speaking, the volume-expansion coefficient 
/3 is a function of temperature, and its dependence is not neces
sarily negligible for water. However, it was found in [15] that 
the differences of / and Nu between the cases of variable and 
constant volume-expansion coefficients were approximately 0.6 
and 2 percent respectively. This discrepancy is tolerable for the 
purpose of industrial application so that the volume-expansion 
coefficient is taken to be constant here for simplicity. There
fore, using equation (1), the rotational centrifugal force per unit 
volume is expressed in the form 

p(6 + aOG" = p„ (l + j\fe + p (1 + j ) /./S&. - t) (2) 

Finally we introduce the modified pressure p' such that 

I / . (3) P ' = P - P „ ( * + | ) . 

With these aforementioned relations, we obtain the simplified 
governing equations, since all the velocity components and tem
perature are independent of <p 

^-{(b + x)u] +^- {(b + x)v] = 0 (4) 
da; by 

bu bu w2 

u — + v 
bx by b + x 

bv bv 
u — + v — 

da; by 

2flu> - ( l + ~)fcl3{tw - t) 

1 bp' b (bv bu\ 
= v — I (5) 

p bx by \bx by/ 

1 bp' 1 d f , N (bv bu\\ 
= — + p {(b + x) I — J} 

p by b + x bx { \bx by / J 
(6) 
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u • • -\ v • + • l \ m — • • L i 

bx by o + x p b + x 

(b2w 1 bw w bho) 
\bx2 b + xbx (b + x)2 by2 J 

bt bt b „ (b2t 1 bt . b2t\ 
bx by b + x \bx2 b + x bx by2/ 

(?) 

(8) 

which are subject to the boundary conditions at the wall 

tt = » = w = 0 i = i» (0) 

In order to nondimensionalize the governing equations we in-
troduce the following nondimensional variables into equations 
(4)-(8) 

v v 
W = w p = V 

T = 

Wl 

tin t 

Afa 
X = 

p(v/ah) 

x 
Y = 

ah ah 

(10) 

Furthermore, we attempt to modify the nondimensionalized 
governing equations to facilitate the numerical procedure. 
First the equation of continuity is identically satisfied by the 
stream function 

U = 
d* 

1 + X/B bY 

Next we insert the vorticity 

V = -
1 b^r 

1 + X/B bX 

J bX 
dj/ 
bY 

into equations (11) to give 

b*& 1 b¥ b2® 
bX2 ~~ B(l + X/B) bX + bY2 •hi) 

01) 

(12) 

f (13) 

In the present analysis the pressure distribution is irrelevant, so 
the pressure terms are eliminated from the equations of momen
tum in the X and Y directions and the equation of vorticity is ob
tained 

a»f I ar i 
bX2 B(l + X/B) bX B2(l + X/B)2 

U 

f + 
£>2f 

bX bY B{1 + X/B) r + 

bY2 

J Z K i ^ d F 
1 + X/B bY 

r- bW 
+ 2V

/BX1Ro — + Grj 
bY (-f) dT 

bY 
(U) 

After some rearrangements, the equations of axial momentum 
and energy are given by 

b2W 
bX- + 

1 bW 
B(l + X/B) bX 

XJW 

B2(l + X/B)2 bY2 9i 

bW + V + 
bY 

2Ro 
B(\ + X/B) + \/BKi 1 + X/B 

- (15) 

b2T 
bX' + 

1 d r b2T 
B{1 + X/B) bX bY2 

I bT bT\ VBKi 

+ X/B 
W (1« 

Equations (11) and (13) to (16) constitute the system of equations 
to be solved. The flow and temperature fields are either synf 
metric or antisymmetric about the X axis, so that it suffices t 
consider only the upper half of the tube cross section for analyst 
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Fig. 2 Variation of axial-velocity distribution with Ro; A = 1.0, B = 50, 
ft = 0.7, Gr2 = 103, Ki = 100 

It is readily found tha t U, W, and T are symmetric, while V, "*$?, 
and f are antisymmetric, and therefore the boundary conditions 
(9) are reduced to 

U = V = * ax = T7 0 at x - ± l ( l + l . ) 

for 0 < Y < — (1 + A) (17) 

f/ = 7 = ^ = W 0 at y = — (1 + A) 
4 

for 
4 K' + r)"*i(' + T) (18) 

= 0 

V = * = f = 0 

at 7 = 0 

for l ( 1 + i)^^i(1 + i) (19) 

The governing equations are solved by finite-difference 
methods. The stability of a difference scheme largely depends 
on how the nonlinear inertia terms are approximated. The dif
ference scheme employed here is the modified one-sided difference 
scheme utilized by Spalding, Runchal, and Wolfshtein [16]. 
Their scheme is based on the idea that the first derivatives in the 
inertia terms are approximated by the forward difference for 
non-positive velocity and by the backward difference for non-
negative velocity, so that the stability criterion is uncondi
tionally satisfied. A detailed description of the numerical solu
tion is given in [15]. 

The vorticity at the walls is unknown, so it should be com
puted from some other dependent variables. For this purpose 
'tis usual to use the relation between the vorticity and the stream 
function, equation (13). The approximation of wall vorticity 
is known to have a significant effect on the stability of the solu
tion, and some approximation formulas have been devised. The 
"orfman-Romanenko method [17] is employed in the present 
analysis. 

Since the governing equations are nonlinear and the coefficients 
1,1 finite-difference equations comprise unknowns, an iterative 
Method should be utilized. The iteration was made in the order 

*"> f, W, T, U, and V. The overrelaxation method was em
ployed to accelerate the convergence. The relaxation parameter 
:<° was computed by co = 2(1 + V l - y)/v with JJ = (cos w/M 
7" cOS7r/JV)/2. Since overrelaxation impairs the stability of the 
j™ative process for vorticity, underrelaxation was applied to it. 
rjneunclerrelaxation parameter was varied from 0.15 to 0.5 accord
ing to the magnitude of the nondimensional parameters. The 

iterations were terminated when the relative error of solutions 
became less than some preassigned small quantity 5. I t was 
found in the preliminary computations that M = 24, N = 12, 
and 5 = 0.001 were the reasonable values from the viewpoint of 
accuracy and economy of computer time. However, in the com
putations for P r > 5, Ro > 100, Gr2 > 104, and Ki > 300, the 
number of divisions was increased to M = 36 and JV = 18 with 
5 = 0.001. The solutions diverged for values of the parameters 
larger than P r = 6, Ro = 300, Gr2 = 3 X 104, and Ki = 103, with 
M = 36andiV = 18. 

Results and Discussion 
The characteristics of flow and heat transfer in rotating curved 

rectangular tubes are governed by the six nondimensional 
parameters A, B, Pr, Ro, Gi-2, and Ki. The parameter Ro in
volves the angular velocity and indicates the effects of the 
Coriolis force, which is, however, usually represented by the 
Rossby number. The Rossby number indicates the relative im
portance of the inertia to the Coriolis force, while Ro is the ratio 
of the Coriolis force to the viscous force. The parameter Ro is 
adopted here instead of the conventional Rossby number because 
the increase in Ro implies the growth of the Coriolis force, and 
its effects are more readily conceivable. These parameters 
are coupled with and affect each other, so that the effects of 
the parameters on the flow and heat-transfer characteristics are 
complicated and are not the mere superposition of individual 
effects, allthough the interactions between the parameters 
are indirect compared with the direct effects of each individual 
parameter. 

There are many nondimensional parameters, and to know the 
effects of one of these parameters on flow and heat-transfer char
acteristics, not only tha t parameter but also the rest of the 
parameters should be varied, because their effects are interre
lated and the effects of a single parameter differ for different 
values of the others. Therefore, computations are required for 
an extremely large number of cases to grasp the entire effect. 
However, this requires an extremely long computation time, so 
that, considering the economy, computations were performed by 
giving the parameters the standard values A = 1.0, B = 50, 
Pr = 0.7, Ro = 20, Gr2 = 103, and Ky = 100. To see the effects 
of one parameter, the rest were fixed at the standard values. 
The results of the computations consist of the axial-velocity and 
temperature distributions along the vertical and horizontal 
centerlines, the streamlines and isotherms, the local friction fac
tors and Nusselt numbers, and the mean friction factors and 
Nusselt numbers. I t is a lengthy process to describe the effects 
of all the parameters on the flow and heat-transfer characteristics. 
The descriptions here will be confined to the effects of Ro alone, 
except those on the mean friction factor and Nusselt number, 
provided that the effects of A and Pr on the mean characteristics 
are eliminated. For the complete presentation and descriptions 
of the results see [15]. 

The distributions of axial velocity and temperature along the 
horizontal centerline (left figure) and the vertical centerline 
(right figure) are illustrated in Figs. 2 and 3 respectively in non-
dimensional form with the mean values W/W,„ and T/Tb against 
the nondimensional coordinates X' and Y'. The dotted, solid, 
and one-dotted lines indicate the curves for Ro = 1, 20, and 100 
respectively. The Coriolis forces have a peculiar effect in that 
they flatten considerably the axial-velocity distribution in the 
central region of the tube cross section, while their effect on the 
temperature profile is negligible. The Coriolis forces have both 
x and <p components. Those due to rotation are 2Q,w {x com
ponent) and —2Qu (up component), while that due to curvature is 
— uw/(b + x) (<p component). In the central region where the 
x component of the secondary-flow velocity u is positive, the <p 
components of the Coriolis forces act such that they push back 
the main flow in the negative tp direction. The x component 
eventually has the same effect. A large w produces a strong 
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secondary flow which results in a large braking force, and con
sequently w decreases. A central core where the uniform secon
dary current flows in the x direction is thus formed, and the axial-
velocity distribution possesses a wide flat part at the center. 
However, when w decreases owing to the increase in the braking 
force, the x component of the Coriolis force decreases. I t follows 
that the corresponding secondary flow becomes weak and the 
braking force is reduced. I t is seen, therefore, tha t the Coriolis 
forces always act so as to restore a system to some equilibrium 
state. This restoring property is typical of these forces. On 
the other hand, in the vicinity of the upper wall the velocity com
ponent u is negative and the gradient of w with respect to x is 
positive at x = 0. This occurs because the maximum point of 
w is shifted toward the outer wall by the secondary current. 
The ip component of the Coriolis force and the inertia force 
—udw/'bx act in the positive <p direction. Therefore the velocity 
profile along the vertical centerline becomes such that for large 
Ro it increases toward the upper wall, attains its maximum value 
where the secondary-current velocity is highest, and then de
creases in the close neighborhood of the upper wall due to the 
predominant viscous force there. 

As Ro increases, the secondary Row is intensified. I t does not 
mean, however, tha t the secondary-flow velocity in the central 
core is large, because the area through which the secondary cur
rent flows is widened to a greater extent. This result is derived 
as follows. In the equation of axial momentum (15) the viscous-
dissipation term on the left-hand side and the first inertia term 
on the right-hand side are negligible because the axial-velocity 
distribution is flat in the central region. Since the Y component 
of the secondary-flow velocity V is negligible, the second inertia 
term also vanishes. We consider here the case of Coriolis forces 
sufficiently large to decelerate the main flow so that the third 
term of the Coriolis force due to curvature can be ignored com
pared with the Coriolis-force term due to rotation. Accordingly 
the force balance between the Coriolis force and the pressure 
force holds, 

2Ro 

VBIU 

from which we obtain U 

U -
1 

1 + X/B 
= 0 

U 
] _ _ \ZBKj 

1 + X/B ' 2Ro 

V, therefore, decreases with Ro. 
Since both U and V are small in the central core for large Ro, 

convection by the secondary current is negligible. The heat con
vected in the axial direction is consequently supplied mainly by 
conduction, and as Ro increases more heat is transferred to the 
axial flow by conduction. The axial-velocity distribution on the 
horizontal centerline and accordingly the convected heat in the 

Fig. 4 Streamlines and isotherms for standard values of parameters; 
A = 1.0, B = 50 , Pr = 0 .7 , Ro = 2 0 , Gn = 103 , Ki = 100 

axial direction are almost symmetric about the origin so that the 
heat transferred by conduction should also be symmetric. In 
other words the temperature distribution tends to be symmetric 
or less skewed as Ro increases. In the vicinity of the upper wall 
the conducted heat is carried away by both the axial and the 
secondary flows. In the central core the secondary-flow velocity 
is small so that the heat conduction is still significant there, 
This implies that the temperature should continue to increase 
toward the center. The temperature distribution on the vertical 
centerline becomes, therefore, as illustrated in Fig. 3, and is not 
similar to the velocity distribution. I t is also less sensitive to 
the variation of Ro than the velocity distribution. The buoyancy 
force due to rotation and the centrifugal force due to curvature 
induce a strong secondary flow which deforms both the velocity 
and the temperature distributions. However, the Coriolis force 
influences the flow field through two mechanisms, i.e., the secon
dary flow and the braking force, while the heat transfer is en
hanced solely by the secondary flow, which is relatively weak, as 
mentioned previously. Therefore the modification of the tem
perature distribution due to Ro is small compared with that, of 
the velocity distribution. 

As Ro increases, a broad central core is formed with a uniform 
secondary current which flows from the inner wall to the outer 
wall. The returning current is therefore confined to a very thin 
layer next to the wall where the velocity gradient is significant. 
The viscosity is relevant only in this thin layer, its effect being 
negligible in the central core so that it becomes feasible to make 
the boundary-layer approximation for large Ro. I t also holds 
true for large Gr2 and Ki. 

The streamlines and isotherms were obtained by interpolation 
from the distributions of the stream function and the temperature 
respectively. These are shown in Fig. 4 for the standard values 
of the parameters, i.e., Ro = 20, and in Fig. 5 for Ro = 100. The 
three streamlines are drawn so that they pass the points Y' a 

0.05, 0.14, or 0.4 on the vertical centerline, and the four isotherms 
are illustrated for T/Tb = 0.3, 0.7, 1.0, and 1.5. Since they are 
symmetric about the horizontal centerline, the streamlines and 
isotherms are illustrated in the upper and lower halves respec
tively of the cross section. The axis of rotation is located on (he 
left of the cross section so that the secondary circular current 
flows counterclockwise. 

I t is seen in Fig. 4 that the center of circulation is shifted to
ward the outer wall owing to the induced secondary current. I' 
is of great interest, however, tha t the increase in Ro results in the 
reduction of flow rate in the central core because a wide area ol 
uniform secondary flow is created, as explained earlier. ' l" e 

center of circulation is shifted toward the upper wall where 
streamlines are dense and the secondary current is relat ive 
strong. For Ro = 20 the point of maximum temperature t> 
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shifted toward the outer wall. The temperature gradient de
creases at the inner wall, while it becomes steep at the outer wall. 
For Ro = 100, however, the point of maximum temperature re
turns to the center because of the weakening of the secondary 
current in the central region, and a steep temperature gradient 
due to the high secondary-current velocity is seen at the lower 

wall. 
The product of the local friction factor times the Reynolds 

number, and the local Nusselt number at the wall, are plotted in 
Fig. 6 for Ro = 1, 20, and 100 in the order of the upper half of the 
inner wall, the upper wall, and the upper half of the outer wall. 
They are shown on the basis of, those for a stationary straight 
rectangular tube to facilitate the understanding of variations. 
As Ro increases, the wide centra! core is formed where the secon
dary current is directed in the X' direction with a uniform and 
relatively small velocity. This uniform current impinges on 
the outer wall so that the local friction factor there is constant 
over a wide region of the wall. The velocity of the returning 
secondary current, confined to a narrow passage next to the upper 
wall, is somewhat high. The inertia and Coriolis forces enhance 
the main flow and the gradient of the axial velocity increases. 
Consequently the friction factor attains an extremely large value 
at the upper wall. Since the secondary flow is weak and the 
axial velocity is almost symmetric about X' = 0, the variation 
of the friction factor at the inner wall is similar to that at the 
outer wall. However, the effect of Ro on the heat transfer is 
different. The temperature distribution is not altered very much 
l>y the Coriolis forces because of the relatively weak secondary 
How. Accordingly the effect on the Nusselt number is not so 
marked. I t is relatively large at the outer wall, and its increase 
at the upper wall is not as great as that of the friction factor. 

Figure 7 is the result of the computation for the mean friction 
factor and Nusselt number illustrated by the solid and dotted 
lines respectively. They are plotted in the form of / • R e / ( / s • Re) 
and Nu/Nu s respectively against the radius ratio B. B was 
varied from 5 to 500. Since the effect of B is concentrated on the 
centrifugal-force term, it can be reduced by the choice of the 
Uean number instead of the Reynolds number, as shown in 
the figure. The friction factor and the Nusselt number, how-
v̂er, increase slightly with an increase in B, because a fixed Ki 

Hnphes an increase in the axial velocity and accordingly the 
temperature difference, which causes a large buoyancy force. 

J-' igure 8 is the mean friction factor and Nusselt number plotted 
"gainst Ro, which was varied from 1 to 100. The effect of the 
Coriolis forces is largely dependent on the configuration of the 
°iating system. In the flow and heat transfer in a circular tube 
otatmg about a parallel axis which has been solved analytically 
J Mori and Nakayama [4], the Coriolis-force terms are not in-
0|Ved in the axial component of momentum equations. They 
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affect only the velocity components of secondary flow, which are 
usually smaller than the axial velocity, so that the effect of the 
Coriolis forces in this configuration is minor. Since in their 
analysis the axial velocity and the angular-velocity vector are in 
the same sense, the Coriolis forces impair the secondary flow 
induced by the rotational buoyancy force when the wall is heated. 
Therefore both / and Nu decrease with the increase in Ro. More
over the relative effect of the Coriolis forces decreases with the 
increase in Re, because they have no direct effect on the axial 
velocity which does not affect the velocity components of secon
dary flow. This is substantiated by the experiment conducted 
by Humphreys, Morris, and Barrow [3] with the exception that 
/ and Nu increase with the increase of Ro because it seems that 
the axial velocity and the angular-velocity vector are in the op
posite sense. In the present configuration the Coriolis forces 
act not only on the secondary flow but also on the axial velocity, 
and thus enhance secondary flow, so that they exercise significant 
effects on both / and Nu. If the fluid is at rest, there will be no 
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resistance against the secondary flow. Therefore there are no 
critical values at which the effects of the secondary-flow-in-
ducing forces start to appear. Actually, however, they are 
substantially negligible up to some values of the nondimensional 
force parameters. Since the walls of the tube have a direct in
fluence on the rise of the secondary flow, the so-called threshold 
values of the parameters are largely dependent on the geometry 
of tube cross section. For Ro < 10 the effect is negligible. As 
Ro tends to zero, / - R e / ( / s - R e ) and N u / N u , do not approach 
unity because there are some contributions by the buoyancy 
and centrifugal forces. For Ro > 10, / increases rapidly, and the 
extrapolation shows that / - R e / ( / , - R e ) is proportional to Ro1 '5. 
According to Ludwieg's analysis [14] / - R e / ( / j - R e ) is propor
tional to Ro1/" for large Ro. The increase in Nu is less remark
able, and it is shown by the extrapolation of the curve that N u / 
Nu, is proportional to Ro1/ l2. 

Figure 9 shows the mean friction factor and Nusselt number 
against Gr2, which is varied from 100 to 3 X 104. The effect of 
Gi'2 becomes remarkable at Gr2 « 103 where both / and Nu in
crease at almost the same rate as Gr2 in the range of Gr2 computed. 
However, it is seen that there is a trend for Nu to increase more 
rapidly for large Gr2. The extrapolation of the curves shows 
that ,f-Re/(/,-Re) and N u / N u , are proportional to GiV^6 and 
Gr^^ respectively. According to Mori and Nakayama's anal
ysis [4] for a circular tube rotating about a parallel axis, they are 
approximately proportional to G r / ' 9 and Grj1/ ' respectively 
for large Gr2. 

Figure 10 shows the mean friction factor and Nusselt number 
against Ki, which is varied from 10 to 103. The centrifugal force 
begins to exercise a marked effect at Ki « 100, and the rate of 
increase of / is different from that of Nu. This indicates that 
there are interactions between the secondary-fiow-inducing forces, 
and therefore their total effects cannot be represented by the mere 
sum of the effects of each single force. The extrapolation shows 
t ha t / -R e / ( / s -Re ) and N u / N u , vary porportionally to Ki^1" and 
K\'' respectively, while both of them increase with Kil/"- for 
large Ki in the case of a stationary curved circular tube according 
to Mori and Nakayama's analysis [10]. 

Conclusions 
The problem treated in the present investigation is the flow and 

heat transfer in curved rectangular tubes rotating about an axis 
through the center of curvature. The flow and heat-transfer 
characteristics are determined by the six nondimensional param
eters A, B, Pr, Ro, Gr2, and K\. The results of computations are 
presented for the axial-velocity and temperature fields, the local 
friction factors and Nusselt numbers, and the mean friction 
factors and Nusselt numbers. Because of excessive length, the 
presentation of results is confined to the effects of Ro alone on 
the flow and heat-transfer characteristics, except those on the 
mean / and Nu. However, the effects of A and Pr on the mean / 
and Nu are abbreviated. 

The formation and intensity of secondary flow are characteristic 
of each parameter. Both an increase and decrease in A impair 
the secondary flow, because a narrow cross section causes a greater 
resistance against it. I t is somewhat intensified by the increase 
in B, since the axial velocity and accordingly the centrifugal and 
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Coriolis forces are increased by it. Pr exercises practically no 
effect, although the intensity of the secondary flow tends to 
decrease very slightly. Ro creates a broad central core where a 
uniform and rather weak secondary current flows, but a rather 
strong returning current arises in the immediate vinicity of the 
upper and lower walls. The effect of Gr2 is somewhere between 
those of Ro and Ki, and the secondary flow is strong not only 
in the central region but also in the neighborhood of the upper and 
lower walls. Ki induces a strong current along the horizontal 
centerline, which, however, decreases rapidly toward the upper 
or lower wall. 

The friction factor / and the Nusselt number Nu are also af-
fected characteristically by the parameters. Their increase is 
most remarkable when 4̂ = 1. As A deviates from unity, how-
ever, the secondary flow is suppressed, so tha t the mean / and Nu 
approach those for a stationary straight tube. They are raised 
as B increases, but its effect is minor because its greatest effect is 
involved in the centrifugal force in terms of K\. Pr has no sub
stantial effect on / , while Nu is significantly increased. On the 
contrary, Ro causes a great increase in / , but Nu is much less 
enhanced. Their increase due to Gr2 is gradual. However, it 
has an advantageous characteristic in that it tends to make more 
contribution to the enhancement of heat transfer than flow fric
tion. Ki also possesses the same advantage, and raises more 
rapidly b o t h / and Nu than does Gr2. 

Since the tube wall exercises a resistant force against the secon
dary flow, its rise and intensity depend largely on the geometrical 
shape of the tube cross section. I t is apparent, therefore, that 
the threshold values of the nondimensional force parameters at 
which their effects commence to be considerable are different, 
according to the tube cross section. For the rectangular tube 
with A = 1 the threshold values are Ro ~ 10, Gr2 ~ 103, and 
Ki « 100. 
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Convective Instability in the Thermal 
Entrance Region of a Horiiontal Parallel-
Plate Channel Heated from Below 
An investigation is carried out to determine the conditions marking the onset of longitudi
nal vortex rolls due to buoyant forces in the thermal entrance region of a horizontal 
parallel-plate channel where the lower plate is heated isothermally and the upper plate is 
cooled isothermally. Axial heat conduction is included in an analytical solution for the 
Graetz problem with fully developed laminar velocity profile. Linear-stability theory 
based on Boussinesq approximation is employed in the derivation of perturbation equa
tions. An iterative procedure using high-order finite-difference approximation is ap
plied to solve the perturbation equations and a comparison is made against the con
ventional second-order approximation. It is found that for Pr > 0.7 the flow is more 
stable in the thermal entrance region than in the fully developed region, but the situation 
is just opposite for small Prandtl number, say Pr < 0.2. Graphical results for tit 
critical Rayleigh numbers and the corresponding disturbance wavenumbers are pre
sented for the case of Pe -*• <» with Prandtl number as a parameter and the case of air 
(Pr = 0.7) with Peclet number as a parameter in the range of dimensionless axial dis
tance from the entrance between x = 0.001 and 4 X 10~1. 

I 
Introduction 

I HE CLASSICAL Benard problem on thermal instabil
ity of a layer of fluid enclosed between two infinite horizontal 
plates heated from below has been studied extensively in the past 
and various extensions of the problem have been reported in the 
literature. 

Recently the onset of longitudinal vortex rolls due to buoyant 
forces for fully developed laminar forced convection between two 
infinite horizontal parallel plates with a constant axial tempera
ture gradient and at different Or identical temperature levels at 
the upper and lower plates was studied theoretically by Naka-
yama, Hwang, and Cheng [l]1 and confirmed experimentally by 
Akiyama, Hwang, and Cheng [2]. The thermal-instability 
problem considered in [1] is characterized by a nonlinear basic 
temperature profile and in this respect is similar to the problem 
studied by Sparrow, Goldstein, and Jonsson [3] where the ther
mal instability in a horizontal fluid layer is caused by a nonlinear 
basic temperature profile due to uniform internal heat generation. 

It is true that the critical Rayleigh numbers reported in [1] are 
useful in estimating the onset of instability in practical problems; 

1 Numbers in brackets designate References at end of î aper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JomWAL OF HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division September 15, 1971. Paper 
No. 72-HT-P. 

however, the assumption of fully established basic temperature 
profile is fulfilled only if the channel is very long. In practice the 
ratio of length to hydraulic diameter is usually moderate, and the 
thermal entrance region is of practical interest. The need for 
extending the thermal-instability problem reported in [1] to the 
thermal entrance region is obvious. 

The purpose of this investigation is to determine the conditions 
marking the onset of longitudinal vortex-type secondary flow for 
a hydrodynamically fully developed but thermally developing re
gion of the horizontal parallel-plate channel where the lower plate 
is heated isothermally and the upper plate is cooled isothermally-
The problem under consideration can be regarded as the Benard 
problem with fully developed laminar flow superimposed. 
Furthermore, the vortex rolls with axes parallel to the basic flnw 

direction may be regarded as an infinitely elongated form of t"e 

Bernard convection cells. Knowledge of the onset of instability 
is required in the practical design problem since the solution of the 
classical Graetz problem will not be valid after the secondar) 
flow sets in. 

nlol 
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Theoretical Analysis 
Graetz Problem for Fully Developed Laminar Flow between Horizo1 

Parallel Plates. Consideration is given to a Graetz problem wl)"* 
deals with a steady fully developed laminar flow of an incoW' 
pressible viscous fluid with constant properties in a horizon** 
parallel-plate channel, Fig. 1. The fluid temperature is const*" ; 
and equal to the wall temperature T„ for x' < 0, see Fig. 1, excep'. 
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Thermal Entrance Region 

Pig. I Coordinate system for fully developed laminar flow in thermal 
entrance section of a horizontal parallel-plate channel 

that at some axial position x' = 0 there is a step change in the 
lower-wall temperature to a higher value Ti with the upper-wall 
temperature still maintained at the uniform temperature TV 

Referring to the coordinate system shown in Fig. 1, the fully 
developed velocity profile in the unperturbed state is 

Vb = 6Um[(z'/h) - (z'/h)'] = Um(j>u (1) 

where Um is the mean velocity and 4>„ = 6[(,z'/h) — (z'/h)2] is a 
dimensionless quantity representing a basic velocity-profile 
function. The temperature distribution for x' > 0 is determined 
by solving the following equation expressing energy conservation 
for a fluid: 

&U„, 
\_\h/ \h/]dx' K\dz'2 dx'2/ 

(2) 

By introducing dimensionless variables z = z'/h, x = x'/(h Pe), 
md<f>o = {Tb — T0)/{Ti — To) and a parameter Pe = Umh/n, the 
following normalized equation results: 

6(2 - z 2 ) 
d<t>o 

£>x £>Z2 

4>e(x, 

1 

Pe2 

0 ) -

da;2 

- 1 = 

for 

4>e(x 

X 

1) = 

> 0 

(3) 

= 0 

(4) 

The boundary conditions are 

#«(0, z) = cj>e{ oo, z) - (1 - z) 

It is noted tha t the first term d2(t>e/dz2 on the right-hand side of 
equation (3) represents the heat conducted from the lower plate 
and the term 6(2 — z2)dcj)o/dx represents the heat convected in 
the main flow direction. The remaining term in equation (3), 
(l/Pe2)d2$<)/da;2, sign'fies the conduction effect in the main flow 
direction. The solution of equation (3) with the associated 
boundary conditions (4) is given in the Appendix for Pe = 10, 20, 
30, SO, 100, and «.. 

According to the recent works by Hennecke [4] and Hsu [5] 
for the exact analysis of low-Peclet-number thermal-entry-region 
heat transfer based on the rigorous boundary condition of <j>e{ — <*>, 
z) = 0, the heat conducted upstream of x = 0 is found to be sig
nificant only for the extremely small Peclet-number regime. 
However, the upstream conduction effect [5] in the adiabatic sec
tion of the channel will not be considered for the present work in 
order to limit the scope of the investigation. I t should be men
tioned tha t a step change in wall temperature (temperature dis
continuity) assumed at the entrance in the formulation of the 
classical Graetz problem is seldom met in practice. Conse
quently the exact solution of the present problem with the up
stream conduction effect right near the entrance is believed to 
be of theoretical interest only. Furthermore, for the extremely 
small Peclet-number regime the possibility exists that the trans
verse rolls may appear first under certain circumstances. 

Perturbation Equations 
In the thermal entrance region under consideration a nonlinear 

basic temperature distribution Tb — To in the vertical direction 
exists near the lower plate, see Fig. 1, and eventually the dis
tribution becomes linear when the temperature is fully developed. 
Within the thermal boundary layer shown in Fig. 1 a top-heavy 
situation prevails and the onset of convection in the vertical 
direction is marked by the critical value of the Rayleigh number. 
The instability theory considers amall disturbances superimposed 
upon the basic flow, and both the disturbed and undisturbed 
flows are assumed to satisfy the Navier-Stokes equations of 
motion and the energy equation. For this purpose perturba
tions are now superimposed on the basic velocity and temperature 
fields as 

U = Ub + u' V = v' W = w' T = Tb + 6' 

and P = Pb + p' (5) 

where V and W are velocity components in the y' and 2' directions 
respectively, and P& is the pressure in the unperturbed state. 
The above perturbation quantities are considered to be in the 
steady state [1, 2] and are functions of space variables x', y', and 
z' only. Introducing the nondimensional quantities {x', y', 2') 
= h(x+,y+,z+), (u',v',w') = (v/h)(u,v,w), 6' = (AT)8, p' 
= (pv2/h*)p and parameters Gr = fer(Ti - T0)h

3/v2, Pr = v/a, 
Re = Umh/v, Ra = PrGr, Pe = PrRe, the following compo
nent perturbation equations in dimensionless form are obtained 
after linearization involving a few manipulations: 

•Nomenclature-

a = wavenumber, 2irh/\ To, Ti 
c = amplification or damping 

factor, c = 0 on onset of U, V, W 
instability 

D = d/dz Ut, Um 

O = mode shape function defined 
by equation (9) 

Gr = Grashof number, gfiATh3/v2 u, v, w 
g = gravitational acceleration 
h = distance between two in

finite horizontal flat plates u', v', w' 
P = pressure 

Pe = Peclet number, Pr Re 
Pr = Prandtl number, V/K 

V = dimensionless pressure 
Ra = Rayleigh number, g/3ATh3/ 

VK 

Re = Reynolds number, Umh/v 
T — temperature 

Tb = basic temperature in unper
turbed flow 

x,V,z = 

0 = 

AT = 

fixed upper- and lower-plate 
temperatures respectively 

velocity components in x', y', 
and z' directions 

basic velocity in unper
turbed flow and mean 
basic velocity respectively 

dimensionless velocity dis
turbances in x', y', and z' 
directions 

velocity disturbances in x', 
y', and 2' directions 

dimensionless cartesian coor
dinates 

cartesian coordinates 
coefficient of thermal expan

sion 
temperature difference be

tween two plates, Ti — To 
dimensionless temperature 

disturbance 

V2 

temperature disturbance 
thermal diffusivity 
wavelength of vortex rolls 
kinematic viscosity 
density 
basic velocity-profile func

tion 
basic temperature-profile 

function 
dimensionless three-dimen

sional Laplacian operator 

Superscripts and Subscripts 

' = disturbance quantities or dimen
sional quantities 

* = critical value or a dimensionless 
variable 

+ = dimensionless coordinate variables 
or amplitude of disturbance 

0 = basic quantities in unperturbed 
state 
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The appropriate boundary conditions for the disturbances are 

Fig. 2 Axial and vertical velocity perturbalions at the onset of instability 
in the thermal entrance region of a horizontal parallel-plate channel 

= V2 V2w + Gr 
\da;+2 by+V 

Pr ( R e 0 „ ^ + + „ ^ + . & ) = V20 

(6) 

(7) 

(8) 

where V2 = d2/da;+2 + d7dj/+2 + d2/dz+2. 
The following characterization of the disturbance form serves 

also to demonstrate the region of interest in this study: 

u = u +{z+)G{ x + j/+) 

w = w+(z+)G(x+, j/+) 

p = p+(z+) (? (£+ , j /+ ) 

0 - l?+(z+)G(a;+ j /+) 

(9) 

where G(x+, y+) = exp (cz+ + MM/+), C is the amplification factor 
denoting the degree of amplification or damping along the main 
flow direction, and a = 27r/i/(wave length) is the wavenumber to 
be determined. Both quantities c and a are real for the present 
study involving the onset of longitudinal vortices. I t should be 
noted that the perturbation quantities are taken to be "in the 
steady s tate" in this analysis' since steady-state longitudinal 
vortices were observed to occur in the entrance region in earlier 
experiments [2]. After substituting the relations (9) into equa
tions (6)-(8) and utilizing the condition of neutral stability or 
threshold of instability marked by c = 0, one obtains 

(Z>2 - <J2)2M> + = a2 Gr 6* 

(Z>2 - a2)u+ = R e w 

(D2 - a2)0+ = P r | 
dx-i-

+ w 
+ dcfa 

dz + 

(10) 

( I D 

(12) 

where D = d/dz. In view of equation (3) for the basic tempera
ture and previous related works [1, 2], it is convenient to use 
parameters Pr, Pe, and Ra instead of Pr, Re, and Gr which appear 
in the above set of equations. To achieve this end the new 
variables w+ = w*, 0 + = Pr 6*, u+ = Re u*, z+ = z, and x + = 
Pe x are introduced. Then the following perturbation equations 
result: 

(D1 - a2)2w* = a2 Ra 8* 

d<pu 
a2)u* = to* 

dz 

Pr d» dz 

(13) 

(14) 

(15) 
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Dw* 0 at 2 = 0 and 1 (f(j\ | 

I t is instructive to note tha t the term a2 Ra 6* in equation (13)I 
presents the effect of buoyancy forces which is balanced by ft^i 
viscous term (D2 — <x2)2«)*. In equation (14) the inertia force; 
term u>*d<j>u/<>z is caused by the coupled effect of upward djs. 
turbance velocity w* and the vertical gradient of the basic 
velocity-profile function and is seen to be balanced by the viscous 
term (D2 — a2)u*. Furthermore, in energy equation (15) there 
are two convective motions; one is the convective motion caused 
by velocity disturbance u* and basic temperature gradient 
ixfre/bx in the main flow direction, and the other is the convective 
motion caused by velocity disturbance w* and basic temperature 
gradient d0e/d« in the vertical direction. These two convective 
terms are balanced by the conduction term (D2 — a2)6*. The 
boundary conditions w* = u* = d* = 0 indicate that the velocity 
and temperature disturbances vanish on the solid boundary, and 
the condition Dw* = 0 follows by also applying the continuity 
equation. 

In this investigation a minimum value of Rayleigh number and 
the corresponding wavenumber which permits a solution of the 
set of the disturbance equations satisfying the boundary condi
tions is sought. 

Numerical Method of Solution Using 
High-Order Finite-Difference Approximation 

Since the solution of equation (3) for the basic temperature 
distribution is available in a numerical form, a finite-difference 
method using iterative technique is chosen for the simultaneous 
solution of the disturbance equations (13)-(15). The details of 
the numerical solution will not be given here because of space 
limitation. 

The high-order finite-difference approximation due to Thomas 
[6] in a study on the stability of plane Poiseuille flow is employed 
in the present investigation. The detailed derivation of the 
approximation is given by Chen [7] in a s tudy on the hydrody-
namic stability of developing flow in a parallel-plate channel. 
After extensive numerical experiment, a mesh size of M — 40 b 
used in all the computations to insure the accuracy for at least 
five significant figures. 

Results and Discussion 
Perturbed Velocity and Temperature Fields. S o m e i n s i g h t s into the 

physical mechanism of thermal instability for the present prob
lem can be gained by a detailed study of the perturbed velocity 
and temperature fields. Pig. 2 shows the distribution of the 
velocity disturbances along the vertical section of the upward 
stream (see inset), u* in the main flow direction, and w* in the 
vertical direction, at representative axial positions x with the 
fully developed basic velocity profiles 2<f>u/3 superimposed for 
comparison for the case of Pr = 0.7 and Pe -*• <». Since the 
magnitudes of the disturbance quantities cannot be determined by 
using linear stability theory, the values of u* = 0.1 at z = 0.2-t 
and w* = 0.1 at z = 0.5 are taken as reference values. Due to 
the fact tha t the unstable region prevails in the lower par t of the 
channel, the relative magnitudes of the velocity disturbances are 
seen to be larger in the lower region z < 0.5 than those in the 
upper region z > 0.5. This trend becomes less pronounced a'5 

the axial distance x increases. For example at re = 0.4 the abso
lute values of the disturbances are almost symmetric with re
spect to the central plane z = 0.5. From this figure one can als° 
say tha t the eye of the vortex roll is initially located in the lower 
region of the channel when x is small and gradually moves to
ward the center line z = 0.5 as x increases. 

The distribution of the temperature disturbance 6* along yie 

vertical section of the upward stream is of considerable theoretic*1 

interest and is shown in Fig. 3 with the basic temperature proi file 
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Fig. 5 Effect of Prandtl number on critical wavenumbers at the onset of 
fig. 3 Basic temperature-profile development and temperature perlurba- instability for Pe - > °° 
(ie-ii at the onset of instability in the thermal entrance region of a horizon
tal parallel-plate channel 
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Fig, 4 Effect of Prandtl number on critical Rayleigh numbers marking the 
onset of instability for Pe—>- oo 

<j>D superimposed for comparison for 1?he identical case, Pr = 0.7 
and Pe - * co, and identical axial positions as are shown in Fig. 2. 
Again the value of 6* = 0.1 at z = 0.5 is taken as the reference 
quantity. I t is found that the maximum temperature dis
turbance is located in the range 0.1 < z < 0.5 depending on the 
axial position x. This observation is of particular interest in 
experimental verification of the onset of longitudinal vortices by 
a transverse temperature-profile measurement for the small tem
perature fluctuations using a thermocouple probe [2]. 

Effects of Prandtl Number and Peclet Number on Critical Rayleigh 

Numbers Ra*. The Rayleigh numbers marking the onset of in
stability along the axial direction in the thermal entrance region 
of the parallel-plate channel are presented graphically in Fig. 4 

. for various Prandtl numbers for the case where the axial-conduc
tion term is neglected (Pe —»• <*>) with 4>e(0, z) = 0. In this 

> figure both the entrance and Prandtl-number effects are of interest. 
Referring to perturbation equations (13)-(15) it is seen tha t 

the flow field is destabilized by the term representing the vertical 
: convective motion, w*d<j>e/dz, only when the Prandtl number ap
proaches infinity. With thinner thermal boundary layer, see 

j?Kgs. 1 and 3, the flow is more stable in the thermal entrance 
)region than in the fully developed region. I t is expected tha t as 
tthe axial distance x increases the basic temperature profile 
| gradually approaches the linear temperature profile in the fully 

> developed region and the critical Rayleigh number approaches a 
jcritical value of 1707.76 at x « 0.1. When the Prandtl number 

18finite_the effect of convective motion in the main flow direction 
represented by the term {u*/Vr)ixj)g/i>x also destabilizes the flow. 
*or small Prandtl number, say 0.1 or 0.2, the destabilizing effect 
"UB to the convective motion in the main flow direction pre
dominates over the stabilizing effect of thinner thermal boundary 
ayer and the flow i'i more unstable in the entrance region than in 
'he fully developed region. 

In Fig. 4, when Pr > 0.7 the critical Rayleigh number de
feases monotonically with increasing axial distance and finally 

Approaches to a limiting value of 1707.76. On the other hand, 
hen Pr < 0.2 the critical Rayleigh number increases mono-

i ' I—i i i i i : I 

i i i i I i i i i i i _ 

Fig. 6 Effect of Peclet number on critical Rayleigh numbers marking the 
onset of instability for air (Pr = 0.7) 

tonically along the axial distance and approaches the same limit
ing value from below. Thus a completely different trend is ob
served for the small-Prandtl-number case as opposed to the 
large-Prandtl-number case. This can be explained from the 
fact tha t as Pe -*• co, <f>o is the same for all Prandtl numbers, but 
the effect of the axial-temperature-gradient term (U*/PT)C>4>O/£>X 
increases as Pr decreases. As x increases, both effects diminish 
and eventually vanish completely when the temperature profile 
becomes linear and fully developed. All the curves for various 
Prandt l numbers are seen to approach a critical value of Ra* = 
1707.76 at x « 0.1 ~ 0.2. The curve for Pr = 100 is seen to be 
very close to the curve for Pr ->- °°, and for practical purposes 
they may be regarded as identical. From this, one also sees the 
practical implication of large Prandt l number. 

The interaction of the two opposing effects represented by the 
two extreme cases of Pr -»• a> and Pr -*• 0 in the thermal entrance 
region is noteworthy. The stabilizing effect in the' form of 
thinner thermal boundary layer corresponds to the case of Pr ->-
co and the destabilizing effect in the form of convective motion in 

the axial direction corresponds to the other case of Pr -»• 0. 
When the Prandt l number is finite both effects are important in 
the thermal entrance region. I t is well to note that when the basic 
temperature becomes linear and fully established, d(j>g/&x = 0 
and the perturbed equations (13)-(15) reduce to those for the 
classical Benard problem. Under the condition of uniform but 
different wall temperatures the critical Rayleigh number re
mains Ra* = 1708 regardless of the presence of forced flow. 

The critical wavenumbers of the disturbances corresponding to 
the critical Rayleigh numbers shown in Fig. 4 are presented 
graphically in Fig. 5. The variation of the critical wavenumber 
along the axial distance for different Prandt l numbers is of con
siderable interest. For Pr > 100 the critical wavenumber de
creases monotonically along the axial distance, but for the range 
0.7 < Pr < 10 a maximum value for a* exists. The location of 
the maximum value from the entrance increases as the Prandt l 
number decreases. For Pr = 0.1 the critical wavenumber does 
not seem to change up to x = 0.01, and then increases to t he 
limiting value of 3.116 from below for the fully developed case 
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Fig. 7 Effect of Pecfet number on critical wavenumbers at the onset of 
instability for air (Pr = 0.7) 

at x ~ 0.2. All the curves are seen to approach the limiting value 
a* = 3.116. The behavior of a* in the thermal entrance region 
for Pr < 10 shown in Fig. 5 is rather complicated and no physical 
explanation can be offered. 

At this point it should be said that the experimental confirma
tion of the limiting critical values Ra* = 1708 and a* = 3.116 for 
the fully developed condition is reported in [2]. 

Consideration may next be given to the effect of Peclet number, 
representing the contribution of convective motion relative to 
that of axial conduction on the onset of instability. Fig. 6 pre
sents the variation of the critical Rayleigh number along the axial 
distance for Pr = 0.7 with Peclet number as a parameter. Since 
the dimensionless axial distance x is defined as x'/(hPe), the effect 
of Peclet number cannot readily be explained. Focusing one's 
attention to the curves for Pe = 10 and 100, one finds the critical 
Rayleigh number to be Ra* ~ 3400 for Pe = 10 at x = 0.01 or 
x'/h = 0.1, and Ra* « 3900 for Pe = 100 at x = 0.001 or x'/h 
= 0.1. This observation leads one to conclude that at a fixed 
axial position x' the effect of axial conduction is to increase the 
thermal boundary-layer thickness, which tends to destabilize the 
flow. The effect of Peclet number can better be seen if Ra* is 
plotted against the variable x'/h instead of x. However, Fig. 6 
has the advantage of conciseness and convenience in application. 
Practically speaking, the curve for Pe = 100 may be regarded as 
already approaching the asymptotic solution for Pe - * «>, since 
the largest deviation is found to be about 5 percent at x = 0.001. 

The effect of axial conduction is to increase the thermal bound
ary-layer thickness and decrease the axial temperature gradient. 
However, depending on the magnitude of Prandtl number, one 
factor dominates over the other. When Pr - * <*> the increase 
of thermal boundary-layer thickness dominates and the axial 
conduction leads to destabilizing effect. When Pr -»• 0 the de
crease of axial temperature gradient dominates and the axial 
conduction leads to stabilizing effect as can be seen from pertur
bation equation (15). Practically, the destabilizing effect of heat 
conduction appears for Pr > 0.7 and the stabilizing effect of heat 
conduction appears for P r < 0.2. Fig. 6 shows that the critical 
Rayleigh number decreases monotonically along the axial dis
tance and approaches the limiting value of 1707.76 from above. 
Although not presented here, the numerical results show that for 
Pr < 0.2 the critical Rayleigh number increases monotonically 
along the axial distance and approaches the limiting value from 
below. 

The role of wavenumber at the onset of instability is rather 
complicated, as can be seen from the perturbation equations 
(13)-(15). The wavenumber arises from the separation of 
variables, and the terms involving a2 in the perturbation equa
tions represent either the viscous term or the conduction term in 
the transverse direction y'. Fig. 7 shows the critical wavenum
ber distribution corresponding to the critical Rayleigh-number 
distribution shown in Fig. 6. I t should be pointed out that the 
variation of o* in the thermal entrance region is rather small for 

a i r (P r = 0.7) with the maximum variation from a* = 3.116 berno 
about 6 percent for Pe = 10. In view of the complexity of the 

role of wavenumber at the onset of instability, no at tempt will 
be made to explain the behavior of a* shown in Fig. 7. Figs, g 
and 7 suggest that the results for Peclet number of order 100 a], 
ready approach an asymptotic solution for Pe —<- c°, and this 
observation is important in understanding the physics and tl\e 

practical implications of Pe —»- co. In this respect the effect of 
Peclet number depends on the value of Prandt l number and lar»e 

Peclet number does not necessarily wash out the buoyancy effect 
For example with Pr > 0.7 the secondary motion may appear a! 
some downstream position as Peclet number increases, see Fig, g 
For Pr < 0.2 the flow is more unstable in the entrance region 
One also notes that the results neglecting axial conduction (Pe-> 
0) serve as an important asymptotic solution as demonstrated 
clearly in Figs. 6 and 7. 

Concluding Remarks 
1 The onset of steady longitudinal vortices in the thermal on-

trance region of a horizontal parallel-plate channel heated from 
below is approached by an efficient iterative technique based on 
high-order finite-difference approximation [6, 7]. For the case 
with Pe —*- CD the critical Rayleigh number decreases_ mono
tonically along the axial distance from the entrance for largo-
Prandtl-number fluids, whereas the critical Rayleigh number in-
increases monotonically along the axial distance for small-
Prandtl-number fluids. At the end of the thermal entrance re
gion the temperature profile becomes fully established (linear 
temperature distribution) and a limiting value of Ra* = 1707,76 
which is independent of Prandtl number is approached. The 
thermal entrance length x for small-Prandtl-number fluid i; 
longer than that for large-Prandtl-number fluid. 

2 The completely different effects of axial heat conduction on 
thermal instability appear depending on the magnitude of Prandtl 
number. For Pr > 0.7, the increase of thermal boundary-layer 
thickness due to axial conduction tends to destabilize the flow. 
On the other hand, for Pr < 0.2 the decrease of the axial tempera
ture gradient due to axial conduction tends to stabilize the flow. 
The thermal entrance length x depends on Peclet number and i> 
longer for lower Peclet number. 

3 The convergence of the numerical solution is assured by the 
excellent agreement between the limiting values of Ra* = 1707.76 
and a* = 3.116 for the present problem and those of the Benai'd 
problem. The present problem can be considered as an exteimioii 
of the Benard problem with fully developed laminar flow superim
posed. The experimental confirmation for the limiting case with 
Ra* = 1707.76 is given in [2]. 

4 The instability problem for the present parallel-plate chan
nel in inclined configuration making an angle of 4> with respect tu 
the vertical is of considerable practical interest. Under the as
sumption that the free-convection effect from side walls on the 
basic velocity and temperature profiles is negligible, such as in 
the central region of a rectangular channel with large aspect ratio 
[2], the results presented in this study can be applied to the in
clined parallel-plate channel by simply replacing Ra* by Ra* sin? 
for the case of large-Prandtl-number fluid only. 

5 The results of experiments on the onset of longitudinal 
vortices in fully developed laminar convection between horizontal 
plates [2] suggest tha t the present thermal instability problem 
can arise in a horizontal rectangular channel with a large aspec 
ratio, say near the order of 10. This information may be ofin" 
terest in practical application. 

6 The onset of longitudinal vortex rolls is sought in l™" 
analysis since they are observed experimentally even at Re » *•' 
[2]. The region of interest for this study is discussed in [1]- ^ 
contrast, the transverse rolls may have priority of occurreIllU 

when the Reynolds number is extremely small. However, y^ 
finite dimension in the transverse direction for most pracw -
applications may prevent the occurrence of transverse rolls. 
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A P P E N D I X 

Solution oi the Graetz Problem with Axial Heat Conduction 
Reference is made to equation (Ŝ ) for basic temperature and the 

boundary conditions (4). In order to obtain the homogeneous 
boundary conditions at z = 0 and 1 and faster convergence of a 
power-series solution, the following transformations are intro
duced : 

z = 2i + i 

4>e — i — zi + H 
(17) 

Substituting equation (17) into equations (3) and (4) one obtains 

dff 

dx (M dz? Pe8 Jte2" 
(18) 

H(0, «i) + £ - zi = H( co, Sl) = H(x, - i ) = H(x, £) = 0 

(19) 

Applying the method of separation of variables, the solution of (j>g 
can be written as 

1 eo 

«i + J2 GnZnizx) exp (-yn
2x) (20) 

n = l 

where the constants y„2 are the eigenvalues and the functions 
Zn{zi) are the eigenfunctions of the boundary-value problem 

1 
- -
2 

1 
- zi + H = -

2 

Zn" + (TnVPe2 + iyn
2)Zn - 6 Y „ V Z „ 

Zn(-i) = Zn(i) = 0 

0 (21) 

(22) 

The coefficients Cn, n = 1, 2, 3, . . ., are evaluated by considering 
the boundary condition at x = 0 and the orthogonality of the 
eigenfunctions. The result is 

C„ = 
/

'A 

- V 
H(0, 2,)(27„VPe» + | - QzftZndzi 

/

'A 

- V 

(23) 
(2Y„7Pe2 + f - %z^)ZnHzi 

The eigenfunctions Zn of equation (21) are obtained by using 
a power-series solution as 

CO 

zn = J2 A'"Zim 

m = 0 

The solution is found to be accurate up to 12 significant figures. 
The corresponding eigenvalues yn

2 are determined by employing 
the secant method with an error less than the order of 10~8. 
The calculated eigenvalues yn

2 for various Peclet numbers are 
listed in Table 1. A comparison of the first four eigenvalues for 
the case of Pe - * <*> from this work with those listed in [8] shows 
excellent agreement confirming the accuracy of the numerical 
results. 

Table 1 Calculated eigenvalues T „ 2 

n 

1 

2 

3 

4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Pe = co 

7.540701 
7.540 
35.96191 
35.95 
85.72609 
85.73 
156.8283 
156.8 
249.2664 
363.0394 
498.1466 
654.5878 
832.3629 
1031.472 
1251.914 
1493.690 

Pe = 100 

7.536377 

35.84704 

85.03635 

154.4649 

243.2531 
350.3295 
474.4884 
614.4478 
768.9026 
936.5684 
1116.215 
1306.689 

Pe = 50 

7.523465 

35.51094 

83.09086 

148.1291 

228.1029 
320.4783 
422.9615 
533.6113 
650.8537 
773.4427 
900.4027 
1030.971 
1164.550 
1300.663 

Pe = 30 

7.493206 

34.76111 

79.08866 

136.3370 

202.7741 
275.6037 
352.9115 
433.4291 
516.3153 
601.0005 
687.0872 
774.2891 
862.3944 
951.2417 

Pe = 20 

7.435475 

33.45733 

72.99041 

120.6686 

173.0479 
228.2296 
285.1895 
343.3533 
402.3772 
462.0415 
522.1974 
582.7395 
643.5908 
704.6934 

Pe = 10 

7.151305 

28.61544 

55.82801 

84.97557 

114.9146 
145.2647 
175.8672 
206.6406 
237.5365 
268.5232 
299.5793 
330.6894 
361.8423 
393.0298 
424.2455 
455.4846 
486.7436 

Note: The eigenvalues with four figures are from reference [8]. 
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Correlations for Laminar Forced Convection 
with Uniform Heating in Flow over a Plate 
and in Developing and Folly Developed 
Flow in a Tube 
Asymptotic solutions for Pr -*• 0 and Pr -*• <» and numerical solutions for intermediate 
Pr were obtained for a uniformly heated flat plate. The method of Churchill and Usagi 
was utilized to construct a simple correlation for these values. The same method was 
used to develop simple correlations for plug flow and fully developed flow in a uniformly 
heated tube. These correlations were in turn combined to develop correlations for the 
available experimental data and computed values for developing flow in a uniformly 
heated tube. Derivations and test calculations in which convection normal to the wall 
was neglected reveal that this error is significant but insufficient to explain all of the dis
crepancies in the computed values. 

Introduction 

L I HE SUBJECT of laminar forced convection from uni
formly heated surfaces has received considerably less attention 
than forced convection from surfaces with a uniform wall tem
perature. A preliminary examination of the available experi
mental data and theoretical solutions revealed various discrep
ancies for both developing and fully developed flow in tubes. 
Supplementary solutions were therefore derived and computed 
for flow over a flat plate with the intent of using these results as a 
criterion for resolving the discrepancies. Partial success was 
achieved. The concurrent development by Churchill and Usagi 
[ l ] 2 of a method for constructing simple empirical correlations 
then provided a far more powerful method of evaluating and 
correlating the results for both flat plates and tubes, and this in
vestigation was completely reshaped in tha t form. 

Solutions for a Flat Plate 
Mathematical Model. The solution obtained by Blasius [2] for 

the laminar portion of flow over a flat plate can be summarized 
as follows: 

1 Currently with the Depar tmen t of Industr ial and Mechanical 
Engineering, Okayama University, Okayama, Japan . 

2 Numbers in brackets designate References a t end of paper. 
Contributed by the H e a t Transfer Division and presented a t the 

Winter Annual Meeting, New York, N . Y., November 26-30, 1972, 
of T H E AMERICAN SOCIETY OF MECHANICAL E N G I N E E B S . Manuscr ip t 
received by the H e a t Transfer Division November 24, 1971. Paper 
No. 72-WA/HT-14. 

u = u0cp'(r))/2 (1) 

v = (viio/x)l/°[v<P'(v) - <P(V)]/Z (2) 

Howarth [3] computed and tabulated values of ip(ri) and (p'(i\)-
For small values of i? this function is represented well by the 
series 

rtv) = ̂ r 
4¥ lbiy 

5! + 8! 

37'5 A'y1 

11! + (3) 

A value of 1.32824 for A has been calculated by Goldstein [4]. 
For large 7) 

<p(t)) —• 2{r\ - 0.860385) W 

The corresponding temperature field can be represented by the 
following energy balance which assumes constant physical proper
ties, negligible dissipation, and the usual simplifications of 
boundary-layer theory: 

bT bT 
u + v 

ox by 

m1 

by* 
(5) 

The boundary conditions are 

T = To for x < 0 a n d for y ->• ~ (6) 

j = -k{bT/by) at y = 0, x > 0 (7> 

Solutions. Pr - * 0. F o r t h e l imi t ing case of P r -»• 0 t h e tempera
t u r e profile develops p r imar i ly in t h e region beyond t h e momen
tum boundary layer in which u ~ ua. Equation (5) then reduces 
to 
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Mo — = a 
ox ay2 

(8) 

Equation (8) with boundary conditions (6) and (7) is equivalent 
to the well-known problem of transient conduction in a semi-
infinite region [5] with x/u0 substituted for t. The solution can 
be expressed in terms of a heat-transfer coefficient as follows: 

Nu x = (irK.exPr)l/'/2 = 0.886(R e iPr)1 / ! 
(9) 

pr ->- CD . For the limiting case of Pr -»• <x> the development of 
the temperature profile occurs very near the wall where only the 
first term in equation (3) needs to be considered. Making this 
simplification and then applying the method of Heliums and 
Churchill [6] permits reduction of equations (5), (6), and (7) to 

V + (r*/2)f -
f = - 1 at 

^ ->- 0 as 

- Y\j/ = 0 

Y = 0 

Y -+ oo 

(10) 

(11) 

(12) 

This boundary-value problem was solved numerically by the 
Runge-Kutta method, guessing values of ^ at F = 0. The 
value of \//(0, co) for which \p(Y, co ) ->- 0 as Y -*• co was calculated 
to be 1.18535. Hence 

Nu* = [4'/V2lA(0, co)]R e a>p rV3 = 0.464Rea>p r
1 /3 ( i 3 ) 

General Pr. Application of the method of Heliums and Churchill 
in the general case yields 

Boundary conditions (11) and (12) are still applicable. This 
problem was solved for a series of values of Pr by the same 
method used for equation (10). In these calculations equation 
(3) was used for t) < 1.6, equation (4) for 7] > 3.0, and the values 
tabulated by Howarth were interpolated for 1.6 < 17 < 3.0. 
For Pr > 10, equation (3) was sufficient since ip(Y, Pr ) becomes 
negligibly small before t\ = Y/{A¥r)l/z exceeds 1.6. 

The heat-transfer rates indicated by these computations can 
be expressed in the convenient form 

Nil* = [ 4 ' / ' / 2 ^ ( 0 , P r M R e ^ P r 1 / ' = 0.464Re*1/2Pr1/3/(pr) (15) 

Values of ^ (0 , Pr) and / (P r ) = ^(0 , co ) /^ (0 , Pr) are given in 
Table 1. I t may be noted that / (P r ) is only a slight function of 
Pr for Pr > 1. The agreement of 1 (̂0, 103) with the asymptotic 
value for Pr —>• co to five significant figures is a confirmation of 
the accuracy of the numerical calculations. 

pr —>• co, v = 0. The effect of neglecting convection normal to 
the plate in the limiting case of Pr —»• co can be evaluated by 
dropping the v(oT/oy) term and again using only the first term 
of equation (3). Dimensional analysis then leads to 

i" + Y*j/' - Y\p 0 (16) 

<P" + 64/' - 6'ip = 0 (14) 

The boundary-value problem represented by equations (16), 
(11), and (12) has the same mathematical form as the approxi
mate representation utilized by Sellars et al. [7], Bird [8], and 
Bird et al. [9] for the temperature field in fully developed laminar 
flow in a tube following the application of a uniform heat flux 
[3, 4]. A solution may be obtained by dividing equation (16) 
by Y, differentiating with respect to Y, and introducing the addi
tional boundary condition 

Pr 

CO 

10* 
10" 
10 
1 

10-1 

10-2 

10-3 

10-< 

lK0, Pr) 

1.18535 
1.18536 
1.18547 
1.8662 
1.19752 
1.27147 
1.5268 
2.0537 
2.9222 

/(Pr) = 

Table 1 Computed values 

HO, °°) 
^(0, Pr) [1 + (0.0207/Pr)2A] 

1.0000 
1.0000 
0.9999 
0.9989 
0.9898 
0.9323 
0.7764 
0.5772 
0.4056 

1.0000 
0.9998 
0.9991 
0.996 
0.982 
0.928 
0.786 
0.585 
0.408 

**(0, Pr) 

1.06509 
.065 
.065 

/*(Pr) = 
^*(0, °°) 

**(0, Pr) 

1. 
1. 
1.066 
1.079 
1.172 
1.463 
2.020 
2.90 

1.0000 
1.000 
1.000 
0.999 
0.987 
0.909 
0.728 
0.527 
0.367 

-Nomenclature-

hx 

hD = 

A = constant = 1.32824 
D = tube diameter, ft 

' / (Pr) = rf,(0, » ) / ^ ( 0 , Pr) 
/*(Pr) = ^*(0, - ) /^*(0, Pr) 

Gz = irD1u,„/4:ax = Graetz 
number 

j/(Tv, - T0) = local heat-
transfer coefficient for a 
flat plate, Btu/hr-ft2-deg 
F 

j/{Tw - Tm) = local heat-
transfer coefficient for a 
tube, Btu/hr-ft2-deg F 

heat-flux density at wall, 

Btu/hr-ft2 

Bessel function of zero order 
thermal conductivity, B t u / 

hr-ft-deg F 
arbitrary exponent in equa

tion (19) 
hxx/k = jx/(Tm - T0)fc = 

local Nusselt number on 
flat plate 

NUD = hDD/k = jD/(Tw - Tm)k 
= local Nusselt number 
in tube 

k 

Nu, 

Pr = v/a = Prandtl number 
Re* = xuo/v = local Reynolds 

number for flat plate 
Dum/v = Reynolds number 

in tube 
temperature, deg F 
inlet temperature, deg F 
mixed-mean temperature, 

d e g F 
local wall temperature, deg 

F 
local velocity in x direction, 

f t /hr 
mean velocity in tube, ft/hr 
free-stream velocity far 

from plate, ft/hr 
local velocity in y direction, 

f t /hr 
any function 
asymptotic behavior of 

function for z —»• 0 
w{ co) = asymptotic behavior of 

function for 2 —»• c° 
w(z)/w(0) for increasing 

and w{ co )/w(z) for de
creasing power of z 

Rez> 

T 

Tm 

Tw = 

11m 

Mo 

V 

Y 

z 

Z 

distance along flat plate or 
tube wall, ft 

distance normal to flat 
plate or tube wall, ft 

(AFrf/'r, = (APrf/'yiu,,/ 
xvfh/2 

any independent variable 
w( co )/u>(0) for increasing 

and w(0)/w(oo) for de
creasing power of z 

thermal diffusivity, ft2/hr 

w(z) 
«>(0) 

W 

ft. 
7 (7s) 

V 
0(Y, Pr) 

V 

P 
<p(v) 

MY, Pr) 

4/*(Y, Pr) 

= roots of equation (24) 

= 1 z~l/'e~'dz = 1.358 
J o 

= y(u0/xuf/'/2 
= (Pr7A)1/'{cp[F/(APr)1/3]} 
= kinematic viscosity, ft2/hr 
= density, lb/ft3 

= velocity distribution func
tion in Blasius solution, 
see equations (1) and (2) 

= k(T - T „ ) U P r ) V W 
xvf/*/2j 

= yj/{Y, Pr) for v = 0 
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(Pr/0.0207)'" (0.0207/Pr)"' 

Fig. 1 Correlation for the effect of Pr on forced convection in laminar 
flow over a uniformly heated plate 

^ ' - > - 0 (17) 

The solution yields ^ (0 , <=°) = 3 ' / 3 / Y ( 7 3 ) = 1.06509, thus giving 
a heat-transfer rate 11.2 percent greater than the solution of the 
complete equation. 

General Pr, v = 0. Dropping the v(dT/dx) term leads to 

tp" + Yd'4/' - 6'\p = 0 (18) 

in place of equation (14). Numerical solution by the Runge-
Kut ta method yielded the values included in Table 1 under the 
headings i/<*(0, Pr ) and /* (P r ) . 

Results. The percentage overestimate of Nu which results 
from neglecting the normal-convective term decreases from 11.3 
percent to 10.9 percent at Pr = 1 and then more rapidly to 4.4 
percent at Pr = 0.01, and of course to zero as Pr —• 0. Ulrichson 
and Schmitz [10] calculated only a 6 percent overestimate for 
Pr = 0.7 in a tube, indicating that their computations may not 
have extended far enough upstream. Since normal convection 
carries energy away from the wall, a solution which neglects this 
term might be expected to underestimate rather than overesti
mate the heat-transfer coefficient. However, as explained by 
Ulrichson and Schmitz, the resulting disappearance of some of 
the heat flux supplied at the wall when the normal velocity is 
neglected has a greater effect. Since the neglect of normal con
vection does not produce a significant simplification in the 
boundary-value problem for Pr > 0, this approximation does not 
appear to have any justification for the flat plate. 

The agreement to four significant figures between \p*(0, <») and 
\p*(0, 103) constitutes a check on the accuracy of the numerical 
integration, since the asymptotic value for Pr - * co was obtained 
from previously tabulated functions rather than by numerical in
tegration. Sparrow and Gregg [11] solved the equivalent of 
equation (14) for Pr = 0.003, 0.006, 0.01,'and 0.03 and compared 
their results with the asymptotic solution for Pr ->- 0. These 
values are compared with those computed herein in the next sec
tion. Other solutions appear to be based on integral or other 
approximate models. 

Correlation for a Flat Plate 
Churchill and Usagi [1] suggested the construction of correla

tions in the form 

W = [1 + Z» (19) 

Since the dependence of N u , on Pr in this instance decreases from 
the 1/a power to the x/% power as Pr increases, the corresponding 
trial correlation is 

0 .886JWAp r VyNu x = [1 + (Pr/0.0207)»'6] (20) 

The values computed herein as well as those computed by Spar
row and Gregg [11] are plotted in Fig. 1 in the form suggested 
by Churchill and Usagi. The curve corresponding to n = 4 
represents the computed values within about 1 percent, although 

a slightly higher value of say 4.5 would yield an even better 
representation for Pr > 0.0207 and a slightly lower value of say' 
3.5 an even better representation for Pr < 0.0207. Comparison 
of equation (20) with n = 4 and equation (15) indicates that the 
empirical approximation for / (P r ) is [1 + (0.0207/Pr)2/a] -'A 
Values of this term are compared in Table 1. 

Asymptotic Solutions for Inlet of a Tube 
in Developing Flow 

The above solutions and correlations for the flat plate can be 
used to develop asymptotic solutions for the inlet region of a uni-
formly heated tube in developing flow insofar as the velocity fielif 
for the flat plate is applicable, i.e., insofar as acceleration of the 
fluid in the core of the tube owing to the development of the 
momentum boundary layer can be neglected. 

For forced convection inside a tube the dimensionless flow rate 
is usually expressed in terms of Rec or Gz and the dimensionless 
heat-transfer rate in terms of N U B , since this latter quantity is a 

function only of Gz for developing flow with Pr = 0 and for fully' 
developed flow at all Pr. The heat-transfer coefficient is ordk 
narily expressed in terms of the mixed-mean temperature rather 
than the inlet temperature. Lipkis [12] suggested tha t reexpre*.; 
sion of the Leveque solution for the onset of heating following a 
step in a wall temperature in fully developed flow in a tube in': 
terms of the mixed-mean temperature would extend its range of" 
applicability to smaller Gz. The equivalent form of equation 
(20) with n = 4 is 

N U B = Gz ' / y{ [ l + (Pr/0.0207)2/3] '7 , - TTGZ" (21) 

The Gz term in the denominator has the effect of increasing 
Nuz>. For large Pr the correction becomes less than 5 percent for. 
Gz > 1075/Pr1/3. In the limiting case of Pr —*• 0 the dependence 
on Gz in the denominator of equation (21) does not become lesr 
than 5 percent until Gz exceeds 3950. Thus the difference be-_ 
tween correlations based on To and Tm may be significant even, 
in the inlet region. The applicability of equation (21) is obvi
ously limited to Gz > Tr2/[1 + (Pr/0.0207 ) 2 / 3 ] , / a by the singular-' 
i ty in the denominator. This singularity arises from boundary; 
condition (6) for y —»• c° which is not valid for the pipe as Gz -»• 0, 

As discussed in the next section, the series solution of Worsffe-
Schmidt [13] for large Gz and fully developed flow reveals that: 

the effect of curvature, which is neglected in equation (21), is to 
reduce N U D . This effect more than compensates for the increase' 
due to the use of the mixed-mean temperature. Lipkis [12] and: 
Munakata [14] previously noted but did not explain the same 
discrepancy for uniform wall temperature. The effect of curva-"; 
ture would be expected to be less in developing flow. Pending 
the development of an analytical solution for developing flow 
corresponding to t.he Worso'e-Schmidt solution for fully de
veloped flow, or of numerical solutions in which the various 
simplifications are evaluated, it therefore seems reasonable tff-
drop the Gz term in the denominator of equation (21) to obtain 
the following better lower bound: 

Nu D = Gz'-Vfl + (Pr/0.0207) ! / a] ' / (22)' 

Correlations for Fully Developed and 
Plug Flow in a Tube 

The series solutions for plug and fully developed flow converge 
satisfactorily for moderate values of Gz. The asymptotic solu« 
tions for Gz —»• °o are valid only for very large Gz owing to tw 
neglect of curvature, but the perturbation solution of Worsfffc 
Schmidt [13] is satisfactory for the intervening range for fully 
developed flow and an equivalent expansion could be derived fof 
plug flow. Empirical correlations for these processes, however, 
still have a justification if they are simpler to use and if they aft; 
sufficiently accurate for practical purposes. Furthermore, * 
correlation for fully developed flow is of direct use in the deriV**. 
tion of a correlation for developing flow. 
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Fig. 2 Correlation for forced convection in fully developed laminar flow 
through a uniformly heated tube based on an asymptotic solution of 
Sellars, Tribus, and Klein 
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Fig. 3 Correlation for forced convection in fully developed laminar 
flow through a uniformly heated tube based on the Worsoe-Schmidt solu
tion 

Plug Flow. Plug flow may be applicable for solids and under 
other special circumstances. However it is primarily of interest 
for fluids as a bounding solution for Pr -*• 0. A solution for plug 
(low can be constructed from the solution discussed by Carslaw 
and Jaeger [5] for conduction in a heated cylinder and is 

NuB = 

where fti are the roots of 

-«E 

•/„(/?) = o 

<V/Gz /ft. (23) 

(24) 

Equation (23) indicates that the asymptotic solution for Gz —> 
m is NUB = 8. Equation (21) with Pr = 0 can be shown to be 
an asymptotic solution for plug flow for Gz —>- co. However the 
singularity at Gz = TTVU + (Pr/0.0207)V 3] I / ! , which is irrelevant 
for large Gz, would persist in a combined expression for all Gz. 
Equation (22) with Pr = 0 may be a more appropriate bounding 
solution in any event because of the compensating effect of neglect
ing curvature. The resulting trial solution is 

N U B / 8 = [1 + (Gz/64)"'2]1 '" (25) 

A plot in the form suggested by Churchill and Usagi of the values 
computed from equation (23) reveals that the best overall value 
of n is 2.0, producing the simple correlation 

N u c = (64 + Gz)1/ (26) 

The series in equation (23) actually converges very rapidly as 
contrasted with the equivalent solutions for fully developed flow. 
Indeed the first term in the series provides a better approximation 
than equation (26) for Gz < 64. Furthermore equation (21) 
with Pr = 0 provides just as good an approximation as equation 
(26) for Gz > 400. Hence equation (26) has value only by virtue 
of its simplicity and its applicability over the entire range of Gz. 

Fully Developed Flow. Prior Work. Sellars et al. [7] obtained a 
series solution for a step in heat-flux density in fully developed 
laminar flow in a tube by integration of the Graetz solution for a 
step in wall temperature and computed the coefficients for the 
first three terms in the series. Siegel et al. [15] derived this same 
solution directly from the differential energy balance and com
puted the first seven terms. Kays [16] integrated the differential 
energy balance numerically for fully developed flow for 4 < Gz < 
"28 in order to test his computational procedure for developing 
"ow. He asserted that his results for a step in uniform wall . 
temperature agreed with the series solution to within 2 percent 
and implied an equivalent accuracy for other boundary con
ations. 

Sellars et al. also presented an asymptotic solution for large Gz 
analogous to the Leveque solution for uniform wall temperature 
wmch can be reexpressed as 

Bird [8] and Bird et al. [9] rederived this equation more di
rectly and in greater detail and showed that it can be reinter
preted as a solution for certain non-Newtonian models. (The 
expression for the temperatiire field in the derivation is incorrectly 
written as h(T — To)/qR2 on page 309, but is correct on page 364 
of [9].) This asymptotic solution is based on the difference be
tween the wall and the inlet temperatures. 

Wors0e-Schmidt [13] derived a series solution which represents 
a perturbation on this asymptotic solution and extends its appli
cability to lower Gz. His solution reveals tha t equation (27) is 
not a lower bound for the general solution as has sometimes been 
asserted or implied. Wors0e-Schmidt attributes the error in 
equation (27) primarily to the neglect of the effect of curvature 
and the use of a linearized approximation for the velocity profile 
near the wall. Churchill and Balzhiser [17] have shown tha t 
the radial heat-flux density goes through a maximum near the 
wall in fully developed flow due to the predominance of the ef
fect of curvature relative to longitudinal transfer. Their equa
tion (11) demonstrates quantitatively how this effect reduces 
Nuc . Analysis of the derivation of equation (27) indicates tha t 
linearization of the velocity profile increases Nile. This effect 
is thus in the same direction but is probably small with respect 
to the effect of curvature. The error due to the use of the inlet 
temperature is in the opposite direction. This partial compensa
tion of errors gives equation (27) more credence than i t deserves. 
The Wors0e-Schmidt solution which corrects for all three errors 
should now be used generally in place of equation (27) and in 
place of the extension derived by Bird. 

Empirical Correlations. Equation (27) was first combined with 
Nu = 4.364 to construct.a correlation in the hope tha t its limita
tions might not be significant in this particular usage. The re
sulting trial expression is 

Nuc/4.364 = [1 + (Gz/29.6)"'3]1 '" (28) 

Nu D = 1.410 Gz1/3 (27) 

A curve representing the series solution, with values computed by 
Wors0e-Schmidt for his series and values computed by Kays by 
numerical integration, is plotted in the suggested form in Fig. 2. 
The seven coefficients and eigenvalues computed by Siegel et al. 
are sufficient only for (29.6/Gz)1/3 > 0.45 (Gz < 325) as indicated. 
Fortunately the solution of Wors0e-Schmidt appears to be valid 
for Gz > 325. The swing of this combined solution below unity 
for (29.6/Gz)1/3 < 0.666 (Gz > 100) is due to the failure of equa
tion (27) to provide a lower bound. The values computed by 
Kays are self-consistent and only about 2 percent high for Gz < 
30, but the deviations become erratic and much greater for larger 
Gz, presumably owing to the use of too large a grid size for tha t 
region. An advantage of the coordinates of Fig. 2 is that these 
deviations which would hardly be distinguishable in a plot of log 
Nuz> versus log Gz are shown very clearly: n = 6 represents the 
series solution within 1 percent for Gz < 90 and is in error a 
maximum of only 3.5 percent for larger Gz. 
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The first-order correction of the Wors0e-Schmidt solution in
cluding correction for the mixed-mean temperature can be ap
proximated closely as 

Nuo = 1.41 Gz'/3 - 1.00 (29) 

This approximation corresponds to a tangent at 29.6/Gz = 0 to 
the curve representing the solution of Worsjfe-Schmidt in Fig. 2. 
Nuo = 4.364 can be combined with equation (29) to yield the 
trial solution 

(Nuo + l)/5.364 = [1 + (Gz/55)"'; (30) 

The corresponding plot is shown in Fig. 3. Some dissymmetry 
is evident: n = 10/3 represents the solution closely at Gz = 55 
but is in error as much as 3.5 percent for small Gz and as much as 
2.5 percent for large Gz. The choice of equation (28) or (30) 
depends on the application. For example equation (30) may be 
preferable to equation (28) as an asymptotic solution for de
veloping flow for large Gz since it is a lower bound, whereas 
equation (28) is not. 

Developing Flow in a Tube 
An exact analytical solution for a developing velocity field in a 

tube has not yet been derived. Hence solutions for forced con
vection have either utilized an approximate analytical solution or 
a numerical solution for the flow field. Apparently neither an 
analytical solution nor a general empirical correlation has been 
developed for convection. A simple correlation of the various 
values obtained by numerical integration would appear to be of 
value. This has been the principal objective of this work. Un
fortunately the various sets of computed values are not in agree
ment, so tha t a prerequisite to the development of a reliable 
correlation is the critical evaluation of the computed values. 

Prior Work. Kays [16] presented results obtained by numerical 
integration of the differential energy balance for developing flow 
in a uniformly heated tube for Pr = 0.7 and Gz g 785. He 
utilized the approximate analytical solution for the longitudinal 
velocity field derived by Langhaar [18] and neglected radial con
vection. His solution agrees closely with the experimental data 
of Kroll for Gz < 180 as reported by Tribus and Klein [19]. 

Heaton et al. [20] subsequently presented tabulated values of 
an approximate integral solution for the inlet region of an annu-
lus with a uniform heat-flux density at the wall, including the 
limiting case of an empty tube, and reported values of N U D for 
Pr = 0.01, 0.7, and 10 and Gz up to 983. The solution takes 
convection normal to the wall into account on the average. The 
same authors [21] presented experimental data for Gz up to 
983. 

Ulrichson and Schmitz [10] integrated the differential energy 

balance numerically for Pr = 0.7. They too used the lon«j 
tudinal velocity field of Langhaar but calculated the radial 
velocity field from the continuity equation and hence took radial 
convection into account. Their results agree closely with the 
solution of Heaton et al. for Gz < 1000 bu t are somewhat above 
their experimental data. From test calculations in which radial 
convection was neglected, they conclude that this simplification, 
results in a 6 percent overestimate of N U D near the entrance 
They further conclude that the earlier values of Kays are sis. 
nificantly in error on the high side because of the use of too lar»e 

a grid size. (The abscissas of the figures in [10] should be labeled > 
a;/4RerPr, which is equivalent to x /DReoPr in the nomenclature j 
of this paper, rather than 4a;/Rez>Pr.) Ulrichson [22] presented I 
additional results for Pr = 0.08 and 0.4. i 

Manohar [23] integrated the differential mass and momentim 
balances as well as the energy balance numerically. He con-
eludes tha t the values of N U D computed by Ulrichson anj 
Schmitz are slightly low for large Gz because of their use of an 
approximate solution for the velocity field, and agrees with their 
assessment of the values computed by Kays. Manohar presents 
only curves, but the computer printout of the calculations hss 
been generously provided for use in this work. 

Development of on Expression for Correlation. Combination oi 
equation (28) with n = 6 and equation (22) yields the tea 
expression 

NUB 

4.364[1 + (Gz/29.6)*] 21 V» 

L 1 + \[1 + (Pr/0. 
Gz/19.04 

0207)2/3]1/2[l + (Gz/29.6)2] ' / ' 

(31; 

This expression proves to be surprisingly successful even though 
equation (28) is not a true lower bound. 

Arbitrarily adding 1.0 to the left side of equation (22) to cor
rect for the net effect of curvature and the use of the inlet temper
ature makes it compatible in form with equation (30). Com
bining this expression with equation (30) with n = a % yields 

N U D + 1 

5.364[1 + (Gz/55) v»] 
u / » l Vio 

1 + 
Gz/28.8 

J l + (Pr/0.0207)1! /3]1/ l[l + (Gz/55)10/! J 
(32. 

This equation, which is based on a better lower bound, also 
proves successful for correlation. 

Equations (31) and (32) appear to be somewhat ungainly, bu'. 
they are probably the simplest possible expressions which con
verge to the chosen asymptotic solutions for both large aiw 
small Pr and Gz. Thus for any n they approach the chosen corre
lations for fully developed flow as Pr - * <=, they approach the 
chosen asymptotic solution for the inlet region as G z - > co, the? 
approach the upper bounding solution for plug flow as Pr -** 
for large Gz, and they approach Nuo = 4.364 as Gz —»• 0. 

Evaluation of Computed and Experimental Values. The compUtK 
values of Kays, Heaton et al., and Manojmr (selected) and 
experimental values of Kroll and Heaton et al. are plotted l 
Fig. 4 in the form suggested by equation (31). The compu1 

values of Ulrichson are represented by curves since tabula" 
values are not available. The computed values of Manoni 
Ulrichson, and Heaton et al. for Pr — 0.7 are in general ag" 
ment, although the values of Manohar which are the latest 
presumably most accurate show considerable scatter for 1 
Gz. The computed values of Heaton et al. for Pr = 10 and « 
Pr = 0.01 and large Gz are also in accord. The experimeffl 
values of Heaton et al. are generally 10 percent below the cot 
puted values. The computed values of Kays and the exp1 

mental values of Kroll deviate increasingly and significantly 
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, . ygh side as Gz increases. The agreement between the re-
ilts of these two early investigations was apparently fortuitous 
id gave them false credence. The computed values of Ulrich-

0.04 and 0.8 and of Heaton et al. for Pr = 0.01 are •£-son for P f 

.„ high for small Gz but appear to be approaching the pre-
mably more reliable values as Gz increases. 
final Correlations. I t appears tha t n = 3 is a reasonable choice 

to represent the computed values in Fig. 4. If complete confi-
lence could be placed in the experimental values of Heaton et 

5 would be a better choice. However, in view of the al., * 
agreement of the several independent theoretical solutions it is 
nrobable that the experimental values are in slight error on the 
low side. I t should be emphasized that the choice of coordinates 
in Fig- ^ exaggerates the deviations. The maximum difference 
between the curves for n = 3 and n = 5 is only 10 percent and is 
completely negligible at both large and small Gz. Indeed even 
the most extreme values in Fig. 4 do not differ from the curve 
(or« = 3 by much more than 25 percent. I t is somewhat sur
prising that the computed values for large Gz do not fall slightly 
below unity as they do in Fig. 2, since this plot has the same 
theoretical limitation. I t may be that more accurate values for 
larger Gz would. 

The alternative correlation suggested by equation (32) is shown 
in Fig. 5 in which only the sets of values which are deemed to be 
most reliable are plotted. A value of n = 5/2 appears to repre
sent these values remarkably well. A few values fall slightly 
below unity for small Gz, and the values of Heaton et al. for P r 
= 0.01 are again far above the others for low Gz. 

Evaluation of Asymptotic Solutions for the Inlet. Equation (21) is 
plotted in Figs. 4 and 5 for Pr = 0 and 0.7. The fact that equa
tion (21) for Pr = 0.7 falls below the correlation implies that the 
effect of the acceleration of the velocity in the core exceeds the 
effect of curvature, and conversely** for Pr —»• 0. Equation (21) 
apparently has a far more limited range of applicability than Gr 
> 1000 Pr, the limit inferred from the Langhaar solution. This 
conclusion is critically dependent on the validity of the correla
tions derived in Figs. 4 and 5 and might be modified by additional 
computed values for large Gz and Pr. 

Discussion and Conclusions 
Flat Plate. The values computed herein and the values pre

viously computed by Sparrow and Gregg are in good agreement 
and are correlated within 1 percent for all Pr by equation (20) 
with n = 4. The neglect of convection normal to the wall results 
in a maximum overestimate of Nux of 11.3 percent. 

Tube-Plug Flow. Equation (26) represents the series solution to 
within 10 percent for all Gz. However the series solution con
verges very rapidly and the first term in the series is an even 
better approximation than equation (26) for Gz < 64. Equation 
(21), which is based on the correlation for the flat plate, with Pr 
s 0 represents the series solution even better than equation (26) 
foi'Gz > 400. 

Tube-Fully Developed Flow. The series solution of Wors0e-
oehmidt reveals that the Leveque-type solution of Sellars et al. 
ls not a lower bound for large Gz, owing to the neglect of curva
ture. The extension of this solution to certain non-Newtonian 
fluids by Bird is correspondingly in error. The neglect of curva-
>UVe more than compensates for the error arising from the use of 
'he inlet temperature in place of the mixed-mean temperature by 
Wth Sellars et al. and Bird. Equation (29) is a first-order ap
proximation of the Wors0e-Schmidt solution for uniform heating. 

The seven coefficients and eigenvalues computed for the 
Waetz-type solution by Siegel et al. are sufficient only for Gz < 
"*>• However the Wors0e-Schmidt solution is satisfactory for 
a" higher Gz. The overall solution is represented within 3.5 
Percent for all Gz by equation (28) with n = 6 and within 1 
Percent for Gz < 90. The computed values of Kays are only 
"out 2 percent high for Gz < 30 but are as much as 14 percent 

6ri'or for higher Gz. The overall solution is also represented 
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Fig. 5 Modified correlation for forced convection in developing 
laminar f low through a uniformly heated tube for all Pr 

within 3.5 percent for all Gz by equation (30) with n = ' % . 
This equation is based on the Wors0e-Schmidt solution rather 
than on the Leveque-type solution. 

Tube-Developing Flow. The computed values of Heaton et al. 
for Pr = 0.7 and 10, of Ulrichson and Schmitz ior Pr = 0.7, and of 
Manohar for Pr = 0.7 are represented within about 5 percent 
for all Gz by equation (31) with n = 3 and even better by equa
tion (32) with n = 5/2. These equations also approach the chosen 
asymptotic solutions for both large and small Gz and Pr. Addi
tional precise values for large Gz and large Pr are still needed to 
test the correlations critically in that range. 

The computed values of Ulrichson for Pr = 0.08 and 0.4 and 
of Heaton et al. for Pr = 0.01 are increasingly in error on the high 
side as Gz decreases. The experimental values of Heaton et al. 
for Pr = 0.7 appear to be about 10 percent low. 

The computed values of Kays and the experimental values of 
Kroll are in seriously increasing error as Gz increases. The ap
parently fortuitous agreement between these two sets of values 
gave them early false credence. Kays ' solution deviates from 
the others more than can be accounted for by his neglect of con
vection normal to the wall. The additional error is presumably 
due to the use of too large a grid size. Most current books on 
heat transfer present curves based on this pioneering work which 
is now seen to be in error. 

Equation (21), which is an asymptotic solution for large Gz 
based on the flat-plate solution, would be expected to be high be
cause curvature is neglected and low because acceleration of the 
fluid in the core is neglected. Comparison with the correlations 
for developing flow suggests that the former effect is predominant 
for Pr —»- 0 and the latter for Pr -> <*>. 

The solutions and correlations presented herein all neglect 
longitudinal conduction and variations in the physical properties 
with temperature. McMordie and Emery [24] indicate that the 
former effect is significant only for very small Pr and only in the 
very inlet. Rosenberg and Heliums [25] indicate tha t the latter 
effect may be quite significant. 

Plots such as Figs. 1-5 reveal the scatter of the computed and 
experimental points far more clearly than conventional log-log 
plots. Equations (20), (22), (26), (28), (30), (31), and (32) with 
the appropriate exponents are not only more convenient for cal
culations than the series or numerical solutions which they 
represent, but are more convenient and accurate to use than log-
log plots. Hence this conventional graphical form may have 
outlived its usefulness for the presentation of data and solutions 
for convective heat transfer. 
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Non-isothermal Laminar Flow of Gases 
through Cooled Tubes1 

Numerical solutions of the laminar-flow equations in differential form are presented for 
gas flows through cooled tubes. For nearly isothermal flow there is good agreement with 
available experimental data, as is also found for the case of a large amount of wall cool
ing. This correspondence along with a check on the satisfaction of the global momentum 
and energy constraints allowed an appraisal of the effect of wall cooling on flow through 
tubes. In general, the effect of wall cooling was to decrease the wall friction and the 
change in pressure along tubes, but the average heat-transfer coefficient did not vary much. 

1 Introduction 

IN A RECENT investigation [ l ] 2 numerical solutions 
of the laminar-flow equations in differential form were described 
and compared to experimental measurements for a very high 
temperature argon gas flow through the entrance region of an 
externally cooled tube. The ratio of the wall to inlet enthalpy 
fl» = Hw'/Hti was about 0.05. Good agreement was found be
tween the measured and calculated wall heat flux and internal 
flow and thermal distributions. The pressure was found experi
mentally to be nearly uniform along the flow in the entrance re
gion (actually increased slightly) as the gas decelerated along 
the tube while cooling. This behavior is unlike more familiar 
laminar flow through tubes with no heat transfer in which ac
celeration occurs in the core flow in the entrance region and there 
is a pressure drop, e.g., see the survey in [2] and other investiga
tions [3-11]. 

The present investigation was undertaken to provide informa
tion on gas flows through tubes over a wide range of wall cooling 
spanning the highly cooled to the nearly adiabatic condition. 
The analysis accounts for the variation of properties across the 
flow and involves the numerical solution of the laminar-flow 
equations in differential form. Of specific interest are the in
ternal flow and thermal distribution, pressure variation, wall 
shear-stress and heat-flux distributions along the flow, and how 
these quantities are influenced by the amount of wall cooling. 
Such an investigation apparently has not been reported in the 

, ' This work presents the results of one phase of research carried out 
ui the Propulsion Research and Advanced Concepts Section of the 
Jet Propulsion Laboratory, California Institute of Technology, under 
contract NAS7-100, sponsored by the National Aeronautics and 
bPace Administration. 
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SOCIETY OF MECHANICAL ENGINEEBS and presented at the AIChE-
46>MF, Heat Transfer Conference, Denver, Colo., August 6-9, 1972. 
AbuuiHcript received by the Heat Transfer Division May 14, 1971. 
•;} "Per No. 72-HT-45. 

literature for gases flowing through cooled tubes over this wide 
range of wall cooling. Most of the previous heat-transfer in
vestigations apply to situations where the amount of wall cooling 
(or heating) is sufficiently small so that property variation is 
negligible, e.g., [12-15]. The few analyses, e.g., [16, 17], that 
have been made for a significant amount of wall cooling (or heat
ing) are discussed in Section I I I in connection with the present 
results. These latter analyses differ from the present analysis 
in tha t the inlet profiles were chosen therein to be nonuniform, 
presumably because of a relatively long uncooled (or unheated) 
portion of tube upstream [16] or because of the effects of gas 
heating upstream [17]. The present analysis accounts for the 
simultaneous growth of both the velocity and the thermal layers 
in the inlet region, since the axial velocity and the total enthalpy 
profiles were taken to be uniform at the tube inlet. 

The analysis is briefly described (Section I I) , a discussion of 
the numerical calculations and applicability of the results follows 
(Section I I I ) , and then the results are presented (Section IV). 
The results of the calculations and the comparisons to experi
mental data are shown graphically. 

II Analysis 
A brief description of the analysis is given to indicate the differ

ential form of the conservation equations that is considered, the 
spirit of the calculation scheme, and the global conservation 
equations which also must be satisfied by the numerical calcula
tions. Details of the finite-difference formulation are given in 

[1]. 
For steady axisymmetric laminar flow the conservation equa

tions tha t are taken to describe the flow through a stationary 
tube are as follows: 

continuity 

J (pV) + - !• (rpV) = 0 
oz r or 

(1) 

axial momentum 
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pw 

total energy 

. . M Y 

bu/ 

bz dr 

dp' 

Az 

pw bz + 

r dr \ dr / 

, , d f l / l d / bT'\ 
p t i = I rfc I 

or r or \ dr / 

(2) 

i a 

r or 
(3) 

and (3) to directly solve for the axial velocities and total enthal, 
pies across the flow at the z + Az location from the known valugs 

at the prior z — Az and z locations by a method of successive 
iterations. The equation of state, viscosity relation, and total 
enthalpy were used to express p', p ' , p,', and H' or 7" in terms of 
w' and fly. Radial velocities were obtained by integration of 
the continuity equation across the flow. The pressure distribvj. 
tion was calculated along the flow by using the mass-flow con-
straint which in nondimensional form is 

In these equations where the primes refer to dimensional quan
tities, w' and u' are the axial and radial velocity components in 
the z and r directions, respectively, and the total enthalpy is 

I,„ = 0 where /„ -r. pw£d£; f = 0) 

AY = H' + (w'y + {u'y 
(4) 

In this form of the momentum and energy equations, the im
portant viscous stress is taken to be the shear stress in the axial 
direction, T' = fi'dw'/dr, the important heat flux that in the 
radial direction, q' = — k' bT'/br, and the pressure is taken to 
be uniform across the flow so that p' is a function of z only. The 
analysis accounts for variable properties across the flow, radial 
convection, and viscous dissipation. A perfect gas is considered 

(5) p' = p'RT' 

with a viscosity-temperature relation described empirically as 

in conjunction with an averaged axial-momentum equation in. 
volving a balance between the axial convective acceleration and 
the pressure gradient. In this method, the pressure was adjusted 
so that the axial velocity was forced to satisfy the mass-flow con-
straint, which indeed must be the case. 

The numerical formulation allows for variable radial and axial 
increments. The radial increment can be chosen to become 
progressively smaller as the wall is approached where gradients 
are larger. Without this provision the wall shear and heat 
flux cannot be obtained accurately with a reasonable number of 
radial increments for gas flows with an appreciable amount of 
wall cooling [1]. 

In addition to satisfying the mass-flow constraint, the integral 
form of the conservation equations (2) and (3), i.e., momentum 
and energy, should be satisfied. In nondimensional form these 

M {T'T (6) 

The Prandtl number Pr = fi'cp'/k' is presumed to be invariable 
with temperature. The distributions of axial velocity and of 
enthalpy are taken to be prescribed at the tube inlet, and the tube 
wall is taken to be impermeable and at a specified temperature 
dictated by external cooling so that the enthalpy distribution 
along the wall is known. 
. The system of equations was written in terms of nondimen
sional independent and dependent variables as given in [1]. By 
expressing the nondimensional version of equations (2) and (3) 
in finite-difference form, the numerical solution was carried out 
in the axial direction z because of the parabolic form of the equa
tions. The calculation scheme consisted of using equations (2) 

I Mi - IM = - | A P + IT 

iBi ~ Iff = I„ 

(8) 

(9) 

where the momentum and enthalpy integrals and pressure-change 
parameter are 

'" = / . ' 
IM = PW2tdZ 

TH = f pwH£dt; AP = ™ Z 7 7 ^ (W) 
P / ( » . • ' ) • 

and the shear-stress and heat-flux integrals are 

-Nomenclature-

As = surface area of tube 
cf = friction coefficient, equation 

(12) 
cp' = specific heat at constant pres

sure 
D = tube diameter 
g = gravitational force per unit 

mass 
h = average heat-transfer coeffi

cient based on log mean 
temperature difference 

H' = static enthalpy 
Hw = wall to inlet total enthalpy 

ratio, HJ/Hti 
H,' = total enthalpy, equation (4) 
Ht = dimensionless total enthalpy, 

Bt'/Hu' 
I,M I MI 1 = mass, momentum, and en-

IH\ thalpy integrals, equations 

(7) and (10) 
IT, lq = shear-stress and heat-flux in

tegrals, equation (11) 
k' = thermal conductivity 
L = tube length 
m = mass flow rate 

Nu f l = Nusselt number, equation (12) 
p' = static pressure 
Pr = Prandtl number 

A P = pressure-change parameter, 
equation (10) 

dT' 
q' = heat flux, q' = —k' 

dr 
r = radial distance 

rw = tube radius 
Ii = gas constant 

Rea,- = Reynolds number based on 
diameter, Rez>,- = p/w/D/ 
V-i 

T' = static temperature 
Tw = wall to inlet temperature 

ratio, TJ/Ti' 
u' = radial velocity component 
w' = axial velocity component 
w = dimensionless velocity, w'/w/ 
z = axial distance 
y = specific-heat ratio 

S* = boundary-layer displacement 
thickness 

f = dimensionless radial distance, 

ordinate, 

p,' = viscosity 
v' = kinematic viscosity 
p ' = density 
p = dimensionless density, p'/p/ 

, bw' 
T' = shear stress, r = M -— 

br 
X = dimensionless axial coordinate, 

z_ J _ 
D Reflt-

XL = dimensionless tube-length co-
L JL__ 
D R e B i 

co = exponent of viscosity-tem
perature relation 

Subscripts 

e = exit condition 
i = inlet condition 
<E = condition along tube centerlinc 
w = condition at tube wall 

Superscripts 

' = dimensional quantity 
= average value across flow 
= average value for length of tube 
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'• - ^7^'£qJdz = 2(1 - H^£^d (£) 
(11) 

The friction coefficient c/, the Nusselt number Nuz>, and the di
mensionless axial coordinate % are defined as follows: 

c l -
P*'(«<')* 

N u B = 
D P r 

Off,,' - HJ) p{> 

X = ~ (12) 
D Res,-

These global constraints are important in determining if solu
tions have actually been obtained, since there are errors in the 
finite-difference approximations that depend upon mesh size and 
there are numerical round-off errors to a lesser extent. An at
tempt was made in [1] to satisfy these global relations at each 
axial step, but the scheme was unstable. Consequently, it is 
important to check that the global constraints are indeed satisfied 
before the results can be judged to be reliable. These relations 
are referred to in Section IV. 

Ill Numerical Calculations and Applicability of Results 
Calculations were made for a relatively low-speed flow through 

a tube at constant temperature with Hw = 0.04, 0.5, and 0.99. 
Values of the Prandtl number, viscosity-temperature exponent, 
and specific-heat ratio, typical of many^ gases, are shown in Table 
1 along with the Mach numbers at the tube inlet. Table 1 also 
contains information on the number of radial increments used 
between the centerline and the wall, the radial increment at the 
wall, and the extent of the calculations in terms of the axial co
ordinate XL- For a moderately cooled tube {Hw = 0.5) the calcu
lations extended to a relatively large value of XL for which the 
flow was nearly fully developed. Since the calculations were 
more difficult to make with a large amount of wall cooling (Hw = 
0.04) and consumed a longer computation time, they extended 
to a smaller value of XL- For a nearly isothermal flow {Hw = 
0.99) the calculations were carried out to a value of XL to estab
lish a reference datum to appraise the effect of wall cooling and 
to compare to available experimental data. The calculations 
were made with a UNIVAC 1108 computer. 

Axial-velocity and total-enthalpy profiles were taken to be 
uniform at the tube inlet. Of various inlet profiles that are 
found in practice, including those for abrupt entrances where 
flow separation, reattachment, and subsequent development oc
cur, the uniform-flow condition was felt to be a plausible choice 
in order to calculate the flow and the thermal development farther 
downstream. The precise nature of the inlet condition which is 
usually unknown in most applications tends to be less important 
m determining the pressure drop (or rise), frictional loss, and 
heat transfer for the entire tube as the length-to-diameter ratio 
increases. Numerical calculations with other inlet conditions 
appear in [16, 17]. The case of entering cubic velocity and linear 
enthalpy profiles was treated in [17] for a severely cooled tube 
™» = 0.05). In [16] a relatively long uncooled (or unheated) 
Portion of the tube was presumed to exist upstream so that the 
entering velocity profile where wall cooling (or heating) began 
was taken to be parabolic. Calculations were carried out in 
[16] for one wall cooling condition (Tw = 0.5) and wall heating 
conditions (Tw = 2 and 5) as well as for various uniform wall 
neat-flux conditions. 

_ In the calculations the Reynolds number based on inlet condi
tions Rei,t. was chosen as 500. The results, however, are pre-

ented in terms of dimensionless variables that should lead to 
"egligible error if they are applied to higher Reynolds-number 

ows. This is so because by a different choice of dimensionless 
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Fig. 1 Effect of wal l cooling on the centerline velocity distribution along 
the flow 

independent and dependent variables [16] than used in [1], the 
system of equations can be written in a form in which they de
pend upon the parameters Mit Pr, w, and y along with Hw and 
the shape of the inlet profiles for the situation where the contribu
tion of the radial velocity component to the kinetic energy in the 
total enthalpy expression equation (4) is negligible, i.e., (u'Y/2 
« (w')2/2. Experience has indicated that this is usually the 
case unless the Reynolds number is relatively small. 

Utilization of the present results for much lower Reynolds-num
ber flows, i.e., smaller ratio of inertia to viscous flows, is less 
clear since normal viscous stresses and axial heat conduction, 
not included in this analysis, begin to become important as indi
cated by constant-property calculations, e.g., see [18-24]. Al
though variable-property calculations apparently have not been 
carried out, the constant-property calculations indicate that 
axial heat conduction should not be significant provided tha t the 
Peclet number R e ^ P r is on the order of 50 and larger. . I t should 
be noted in this regard tha t the calculation of variable- or con
stant-property internal flows at relatively low Reynolds numbers 
for which the equations (including the radial-momentum equa
tion) are elliptic are more difficult to make in a meaningful way 
because of the need to specify realistic conditions either at or 
upstream of the tube inlet. 

The question of free-convection effects also arises. This de
pends upon tube orientation and the' magnitude of the gravita
tional forces relative to the viscous forces. For a variable-
property flow this ratio of forces can be written in terms of a modi
fied Grashof number and Reynolds number 

p'g 
H'w'/P* 

= (eD3\ 1 

\ K ' V W'D/V' 

Grp_ 

Re f l 

Calculations in [16] for upward flow through a vertical tube with 
a uniform heat flux along its length indicated that the influence 
of buoyancy was not significant for values of C r ^ / R e ^ up to 
about 50. For other tube orientations, e.g., horizontal, vari
able-property calculations apparently have not been carried out 
for gases to appraise the importance of buoyancy effects. This 
would entail the inclusion of the radial- and circumferential-
momentum equations in the system of equations. Of note is 
that the effect of free convection is less in gases at high tempera
tures, since GvD/ReD oc 1/T1+01. In particular, the effect of free 
convection was not believed to be significant for a very high 
temperature gas flow by inference from the good agreement be
tween the calculated and measured wall heat fluxes [1]. 

To apply the calculations to the flow of specific gases, sufficient 
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Fig. 2 Effect of wall cooling on the pressure changes along the flow 

information must be available to determine the range of tempera
tures and pressures for which dissociation, ionization, radiation, 
and rarefaction effects are not important, since these effects are 
not accounted for in the analysis. 

IV Results 
The results of the calculations and comparisons to available 

experimental data are shown in Figs. 1-9. The global features 
of the flow with a negligible amount of wall cooling (Hw = 0.99) 
are evident in Figs. 1-4. As the shear layer grew in thickness 
and eventually extended to the centerline along the tube, the 
core flow accelerated (Fig. 1), the pressure dropped (Fig. 2), the 
local shear stress shown in terms of the friction group decreased 
(Fig. 3), and consequently so did the average shear stress (Fig. 
4). There is reasonable agreement between the present calcula
tions that display these familiar trends and the relatively small 
amount of experimental data with negligible wall cooling that 
is shown in Figs. 1-4 and summarized in Table 2. In the inlet 
region, measured centerline velocities (Fig. 1) and pressures (Fig. 
2) are larger than calculated. This may be partially caused by 
the finite thickness of the shear layer at the inlet of the tubes. 
These tubes were preceded by contraction sections. Farther 
along the tubes there is better agreement between the calculated 
and measured centerline velocities and pressures. The calculated 
local shear stress also agrees well with the measurements by 
Pfenninger [7]. Of note is that laminar flow was maintained 
at rather large Reynolds numbers in the experimental investiga
tions of Shapiro, Siegel, and Kline [5], Reshotko [6], and Pfen
ninger because of the stabilizing effect of acceleration on dis
turbances in the contraction sections and also in the inlet region 
of the tubes. Reshotko and Pfenninger also used screens up
stream to minimize disturbances. On the other hand, the ex
perimental data of Kays and London [4] (Fig. 4) were obtained 
in a tube with an abrupt inlet where flow separation, reattach
ment, and development occurred downstream. However, the 
length-to-diameter ratios of the tubes were sufficiently large 

(Table 1) so that there still is good agreement between the aver-
age shear stresses inferred from the measurements and those 
calculated (Fig. 4). 

With a large amount of wall cooling (Hm = 0.04) the core_ 
flow decelerated (Fig. 1) and the pressure rose (Fig. 2) in the inlet 
region of the tube. The pressure measurements by Massier, 
Back, and Roschke [25] (Table 2) indicated a relatively small 
pressure rise (Fig. 2) although the predicted rise is more than ob
served experimentally. This discrepancy is partially caused by 
the location of the first pressure tap in the tube inlet region being 
downstream of the actual inlet. Nevertheless, there is an en--
tirely different behavior in a highly cooled flow compared to a 
nearly isothermal flow. The available pressure measurementaj 
although admittedly few, support the predicted trends. Heat-
transfer measurements described in [25] were found to be in good-
agreement in [1] with the predicted values that are shown in KgV 
5. These heat-transfer measurements are not shown agaift 
herein on a local basis, but instead are shown on an overall bash 
subsequently. 

The check on the global momentum and energy constraint 
is shown in Fig. 6. The check was very good for a moderately 
cooled tube (Hw — 0.5) and is considered to be satisfactory 
for a highly cooled tube. For a nearly isothermal flow the 
check was not as good just downstream of the inlet, although 
farther downstream the discrepancy is small. For example) 
for a nearly isothermal flow at a Reynolds number of 500 
the respective differences between the average shear stress fdt 
tubes with an L/D of 1 and 10 are 10 percent and 1.8 percent M 
obtained by using the calculated local shear stress or the shear* 
stress integral inferred from the momentum balance. 

Fig. 6 also indicates the momentum changes and energy losSel 
in the flow. These relations apply as well to tubes of given 
lengths, i.e., % = %£• 

The general agreement with available measurements and the 
satisfactory check with the global constraints warrant a mori 
specific look at the effect of wall cooling indicated by the calcuhv 
tions. 

The predicted development of the velocity and enthalp? 

Table 1 Information on numerical calculations 

0.99 

0.50 
0.04 

/ FEBRUARY 1 9 7 3 

Pr 
2 
3 

0.7 
2 
3 

CO 

3 
4 

0.7 
3 
4 

7 
5 
3 

1.4 
5 
3 

Mi 

0.1 

0.1 
0.076 

No. of 
radial 

increments 
20 

20 
40 

radial 
increment 

at wall 
0.01 

0.04 
0.0025 

No. of 
axial 
steps 

7600 
4030 

XL 
axial 

coordinate 
0.02 

0.2 
0.016 
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Fig. 5 Local heat transfer along the flow 

difference profiles along a moderately cooled tube (Hw = 0.5) is 
shown in Fig. 7. The profiles became less steep near the wall as 
the shear and thermal layers grew along the tube wall; conse
quently, the shear stress (Fig. 3) and heat flux (Fig. 5) decreased. 
The shear and thermal layers extended to the centerline at an 
axial location of % — 0.01. At this location the centerline ve
locity exceeded the inlet velocity by about 25 percent, so that 
similar to a nearly isothermal flow the shear layer grew in an 
acceleration region, but the acceleration was less (Fig. 1). Far
ther along the tube at a location of % = 0.025, the centerline ve
locity reached a peak value and then the flow along the centerline 
decelerated because of cooling and the attendent increase in the 
density of the gas (Fig. 6). In the deceleration region the ve
locity profiles did not develop a point of inflection; hence the 
"0W would still be more stable to small disturbances. Of note is 
'tat at the largest value of x = 0-2 where the flow was nearly 
"% developed, e.g., see Figs. 3 and 6, the centerline velocity 
Was about the same as the inlet value. The enthalpy-difference 
Profiles depict the loss of energy by heat transfer to the wall (Fig. 
•i). 

1-he development of the profiles along the tube is not shown 
a nearly isothermal or a highly cooled flow. For example, 

* [8] for predicted velocity profiles for an isothermal flow and 
' I 'or predicted Velocity and enthalpy profiles for a highly cooled 

*> that include comparisons to measurements. 

for 

Fig. 6 Momentum and energy ratios along the flow with wal l cooling; 
and centerline distributions along the flow in particular for moderate 
cooling, Hw = 0 .50 

The influence of wall cooling on the velocity and mass-flux 
profiles is shown in Fig. 7 at a particular axial location, % = 0.01. 
Near the wall the velocity profile was steeper for a highly cooled 
flow than for a nearly isothermal flow, but it was less steep for a 
moderately cooled flow, presumably because of the smaller mag
nitude of the velocity in the core region compared to a nearly 
isothermal flow. However, the local shear stress (Fig. 3) became 
progressively smaller with the amount of wall cooling, i.e., as 
Hw decreased, because of the lower viscosities at the wall. 

The mass-flux profiles determined the basic flow field. Be
cause of the increase in the density of a gas in the region of a 
cooled wall, the mass flux was larger, and in particular for a 
highly cooled wall exceeded the mass flux in the core region: 
In this case the flow along the centerline decelerated starting 
from the inlet of the tube (Fig. 1). With moderate cooling the 
mass flux in the region near the wall was also larger than for a 
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Fig. 7 Velocilyr and enthalpy profiles across fhe flow of various axial 
locations % for moderate cooling, H,„ — 0.50; and effect of wa l l cooling 
on the velocity and mass-flux profiles across the flow at % ~ " .01 

nearly isothermal flow, and therefore the centerline velocities 
were lower. Even for this case the eventual increase in gas 

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 i 

Fig. 8 Pressure changes along the flow 

density in the core region farther along the tube leads to flow 
deceleration along the centerline. 

The mass-flux deficit in the shear layer in the inlet region also 
determined the kind of pressure variation there (Fig. 8). Ap
plication of the inviscid form of the momentum equation in the 
core-flow region and utilization of the continuity equation give 
the following expression for the pressure change for a low-speed 
flow where the displacement thickness 5* is small compared to 
the radius of the tube: 

A P = 2(8*/rJ (13) 

Estimates from equation (13) are shown in Fig. 8 based on the 

Table 2 Experimental data 

Source 

Kays and London 
(1952)* 

Shapiro, Siegel, 
arid Kline 
(1954) 

Kays (1955) 

Reshotko (1958) 

Pfenninger(1961) 

Ref. 

4 

5 

12 

6 

7 

Flui 

air 

air 

' aii-

air 

air 

Korayem (1965) 10 water-sugar 
solution, 

Atkinson, 
Kemblowski, 

and Smith (1967) 
Massier, Back, 

and Roschke 
(1969) 

11 
Newtonian 

water 

25 high-temperature 
argon 

Hw 

~ 1 

~ 1 

~1.25 

~ 1 

~ 1 

~ 1 

~ 1 

0.039 to 
0.055 

Re/j; 

600 to 
2,500 

51,000 to 
113,000 

Din. 

0.231 

1.25 

600 to less than 
2,500 0.25 

4,100 2.02 
7,600 

16,000 
3,400to 2.0 

110,000 

600 to 
1,230 

500 to 
1,550 

450 to 590 

0.93 

1.0 

1.95 

D 

80 

48 

42 to 
80 

110 to 
670 

250 to 
350 

5 to 38 

48 

7 

Inlet configuration 

abrupt inlet 

contraction section 
upstream 

abrupt inlet 

contraction section 
upstream, with 
screens 

contraction section 
upstream, with 
screens 

contraction section 
upstream 

series of brass 
gauzes in tube 

contraction section 
upstream 

Measurements 

average wall shear 
stress; average 
heat transfer 
with wall heat
ing; see [12] 

pressure drop j 
j 

heat transfer with j 
wall heating j 

velocity profiles; ! 
local pressure j 
drop j 

velocity profiles; j 
local wall shear j 
stress obtained j 
from velocity j 
profiles ! 

velocity profiles; | 
pressure drop > 

velocity profiles 
i 

* Other data reported by Kays and London are for L/D ~ 16, 35, and 100; ReDi from 640 to 5100. 
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Fig. 9 Average heat-transfer group for entire tube 

growth of a low-speed laminar boundary layer with constant free-
stream velocity, i.e., p = const, along a cooled surface [26]. 
These estimates are too high for a nearly isothermal and a moder
ately cooled flow. This difference may be attributable to the 
accuracy of the tube flow calculations just downstream of the inlet 
and to the fact that flow acceleration occurred in this region 
which would decrease the displacement thickness, e.g., see [27]. 
Nevertheless, on an overall basis, the estimates from equation 
(13) indicate the magnitude of the pressure variation just down
stream of the inlet. Of note is tha t Fig. 8 is a logarithmic rep
resentation. The actual magnitudes of the rather small pressure 
changes for tubes with small values of XL M 'e better seen in the 
linear vertical representation of Fig. 2. 

The amount of wall cooling significantly influenced the magni
tude of the local shear stress in the inlet region (Fig. 3). Whereas 
rather small differences are estimated from laminar-boundary-
layer theory for a constant-free-stream-velocity flow over a 
cooled surface, the tube flow calculations indicate larger differ
ences and an opposite effect of wall cooling. This is believed to 
occur because with wall cooling velocity differences across the 
flow are less and the smaller core flow accelerations or decelera
tions would increase the shear stress less than in a nearly iso
thermal flow, e.g., see [27, 28] for laminar-boundary-layer 
calculations. 

The local heat flux in nondimensional form in terms of the 
Nusselt number (Fig. 5) is insensitive to the amount of wall 
cooling and thus acceleration or deceleration in the inlet region. 
This trend is also consistent with laminar-boundary-layer 
calculations [27, 28]. 

Of significant importance is the reduction in the shear stress 
with the amount of wall cooling as seen in Fig. 3 on a local basis 
and in Fig. 4 on an average basis. Hence the frictional drag 
would be less and the mechanical energy losses would be smaller 
than for an isothermal flow. As an example, for a fully de-
sloped isothermal flow the friction group — Re^,- is 8, whereas 

•or a moderately cooled flow the asymptotic value of — Rex^ is 

awut 2.5. Correspondingly, the pressure change is also less 
s'tice application of the momentum equation in the fully de-
"eloped region gives a relationship between the pressure change 
a™ the friction group when the inlet effects have become in-
s«nificant 

AP 
2 * * " ) XL 

flow (Hw = 1), A P = 32Xi, see Fig. 8. Of note is that eventu
ally the pressure must drop along a highly cooled tube that is 
sufficiently long so that the flow becomes fully developed, i.e., 
where there is essentially no heat transfer to the wall. In gen
eral, the asymptotic value for the friction group is 

?»--*(£)&) 
and the asymptotic velocity profile is parabolic 

^ - ^ (1 - f ) 
U>i W; 

The calculated velocity profile shown in Fig. 7 at x = 0.2 for a 
moderately cooled tube is very nearly parabolic, consistent with 
the expected behavior. Of course, numerical calculations must 
be carried out to determine the centerline velocity before the 
asymptotic values for the friction group and the pressure change 
are specified explicitly. 

To facilitate the use of the results in heat-transfer applica
tions, an average heat-transfer coefficient h was calculated based 
on the log mean temperature difference. The results are shown 
in Fig. 9 in terms of the heat-transfer group 

hA, 

mCpi 

As is the surface area of the tube and m is the mass flow rate. 
In this representation h can be obtained from the ordinate in 
Fig. 9 given the inlet conditions, i.e., m, cPi', Reo;, and tube 
length in terms of L/D. I t is also a simple matter to calculate 
the length of tube required to cool a gas to a given exit tempera
ture TJ with specified inlet and wall temperatures and inlet 
conditions. For example, for a specified thermal "effective-

rp I ^p I 

ness," e = — °- , the heat-transfer group is known from an 
' rp I rp f ' o ± 

energy balance (typical heat-exchanger calculation with the 
average heat-transfer coefficient based on the log mean tempera
ture difference and one fluid (surface) at a uniform temperature) 

hA 

the-b^[jh\ (14) 

Therefore, the tube length in L/D can be obtained from the 
abscissa in Fig. 9 and the known inlet conditions. For the other 
situation where the exit temperature is to be calculated for a given 
tube length and specified inlet and wall temperatures and inlet 
conditions, XL is known and the heat-transfer group can be ob
tained from Fig. 9. Equation (14), when rewritten as follows, 
is then used to calculate e and thus TJ 

€ = 1 exp (.Mi) 
Representations that involve the Nusselt number and the 
Reynolds number with properties evaluated at some average or 
"bulk" condition are difficult to use. 

The heat-transfer group shown in Fig. 9 did not vary much 
with wall cooling, a trend also consistent with measurements tha t 
extended over a large range of Hw from the wall heating condition 
Hw ~ 1.25 (Kays [12]) to a highly cooled wall, Hw ^ 0.05 [25]. 
This trend was also observed experimentally by Kays and Nicoll 
[29] for air flow through a cooled tube (Tw from 0.85 to 0.56) at 
Reynolds numbers R e c from 950 to 1400, but with a relatively 
long uncooled length of tube upstream (L/D = 64) so that the 
entering velocity profile was probably parabolic where cooling 
began. The asymptotic value for the heat-transfer group shown 
in Fig. 9 was obtained from the expression 

or a moderately cooled flow, A P c^ 10%L, while for Poiseuille 
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by taking £D//c/ = 3.65 for Hw -* 1. The average or "bulk" 
enthalpy for the flows considered can be obtained from Fig. 6 since 

LL = ^Z 
Isi HH' 

Note that the abscissa in Fig. 6 is x> n ° t x / P f a s it is i n Figs. 5 
and 9. 

V Summary and Conclusions 
Numerical solutions of the laminar-flow equations have been 

presented for gas flows through tubes for a wide range of wall 
cooling from nearly adiabatic conditions to wall-to-gas enthalpy 
ratios as low as 0.04. The large changes in properties that occur 
across the flow for the highly cooled conditions were taken into 
account in the analysis. 

The flow field was found to be strongly influenced by heat 
transfer. Because of the increase in the density of a gas in the 
region of a cooled wall, the mass flux in this region as Hw -*• 0 
exceeded that in the core. Correspondingly, the flow along the 
centerline decelerated in the inlet region. With moderate wall 
cooling, Hw = 0.5, the mass flux in the wall region was also larger 
than for a nearly isothermal flow, Hw —»- 1, and consequently the 
centerline velocities were lower. Even for this case, the eventual 
increase in gas density in the core region farther along the tube 
led to flow deceleration along the centerline because of cooling. 

Smaller pressure changes and wall friction were found with 
cooling. The pressure drop was less because of the smaller mass-
flux deficit in the shear flow. For the case of a highly cooled 
wall there was a pressure rise in the inlet region instead. Of 
significance is the reduction in shear stress with the amount of 
wall cooling since the frictional drag would be less and the me
chanical energy losses would be smaller than for an isothermal 
flow. With wall cooling the shear stress is reduced because 
velocity differences across the flow are less and the smaller core-
flow accelerations or decelerations would increase the shear stress 
less than in a nearly isothermal flow. 

The average heat-transfer coefficient for tubes did not vary 
much with wall cooling primarily because of the insensitivity of 
the heat flux (when normalized by the driving potential for heat 
transfer) to the amount of wall cooling and thus acceleration or 
deceleration in the inlet region. 

The general agreement between the calculations and available 
measurements and the satisfactory check of the global constraints 
indicate that reliable predictions can be made of quantities of 
engineering importance, i.e., pressure drop (or rise), frictional 
losses, and heat transfer, for the flow of gases through cooled 
tubes. 
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An Approximate Analysis of the Diffusing 
Flow in a Self-controlled Heat Pipe1 

Constant-density two-dimensional axisymmetric equations are presented for the diffus
ing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor 
space. Condensation of the vapor is related to its mass fraction at the wall by the gas 
kinetic formula. The Karman-Pohlhausen integral method is applied to obtain ap
proximate solutions. Solutions are presented for a water heat pipe with neon control 
gas. 

Introduction 

L HE FORMULATION of an analytical model for the per
formance of a heat pipe was first developed by Cotter [ l ] . 2 Pie 
derived the governing equations for the processes taking place 
and indicated capillary- and incipient-boiling limits of operation. 
A number of modifications to this theory have been proposed by 
various investigators. For the case of incompressible vapor flow 
and zero gravity, Cotter 's meniscus boundary conditions have 
been modified by Ernst [2] who assumed that the pressure equal
ity between liquid and vapor occurs at the interface between 
condenser and evaporator sections. Various alternative expres
sions for the pressure drop in the gas and liquid have been sug
gested. Busse [3] treated laminar vapor flow in a cylindrical 
heat pipe for constant heat addition and removal by solving the 
Navier-Stokes equation through a fourth-power polynomial 
approximation for the axial-velocity profile. Haskin [4] con
sidered a heat pipe with an adiabatic section where the pressure 
drop was found by assuming Poiseuille flow. Brosens [5] used 
"oiseuille flow throughout the pipe. For high vapor velocities 
^Vy [6] analyzed a one-dimensional compressible vapor flow 
decoupled from the liquid phase and predicted a choking limit. 
Many other models exist for the description of the flow and are 
valid in various regions of applicability. 

It was demonstrated by Grover et al. [7] tha t if a heat pipe 
Wntains a noncondensible gas it is driven to the end of the con
denser. There it forms a stagnant zone the length of which is 
Proportional to the mass of the gas and its mean temperature and 
aversely proportional to the pressure. The result is an effective 
shortening of the condenser, thus reducing the total axial heat-

rt S i n v e s t ' S a t i o n was supported by the National Aeronautics 
™<l Space Administration under contract NAS8-20055. Technical 
?"?nrtoring was by D. Counter, S&E-ASTK-MA, Marshall Space 
"Wit Center, Huntsville, Ala. 

Numbers in brackets designate References at end of paper, 
jiitributed by the Heat Transfer Division for publication (with-
' Presentation) in the JOURNAL OF HEAT THANSFER. Manuscript 

Reived by the Heat Transfer Division April 26, 1971. Paper No. 
'•S-HT-M. 
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transfer capability of the heat pipe. If the axial heat flux is in
creased the pressure increases correspondingly and the gas zone 
contracts to allow more of the condenser to become operative 
again. The converse is also true when the heat flux is decreased. 
Cotter first noted that this feature might be extremely useful in 
certain applications. Katzoff [8] suggested that one possible 
technique to accomplish thermal control with the heat pipe serv
ing as a variable thermal conductor is to intentionally introduce 
an inert gas into the vapor space. Bienert [9] showed that con
trol is improved by the use of large inert-gas reservoirs. He 
further indicated that it is advantageous to keep the reservoir at 
the temperature of the evaporator through intimate contact to 
reduce temperature fluctuations. Bienert, however, assumed a 
perfect interface between the vapor and the inert gas. This 
may or may not be a good approximation depending on certain 
parameters. A number of investigators have experimented with 
inert-gas-controlled heat pipes. Among the most recent inves
tigations is that reported by Marcus and Fleischman [10]. Their 
analysis also considered a perfect interface. Based on their ex
perimental results, however, they concluded that diffusion and 
axial conduction played a strong part in determining the actual 
diffused region and controllability. 

To date no theoretical analysis of the flow in a heat pipe has 
been presented tha t includes the mutual diffusion between the 
vapor and the inert gas. The object of the present investigation 
is to study the theoretical behavior of the diffusing flow and its 
effect on the self-control capability. The analysis is restricted to 
the vapor space and completely decoupled from the liquid flow in 
the wick. Only incompressible and isothermal flow fields are 
treated in a cylindrical heat pipe. The control-gas concept is the 
hot non- wicked reservoir. 

Flow Equations 
The determination of the effect of the inert gas diffusion on 

the self-control capability of a heat pipe is a complex problem. 
The thermodynamic-state variables in the heat pipe are coupled 
to those in the inert-gas chamber. A complete evaluation would 
involve the study of a flow field with evaporation or condensation, 
convection, and diffusion in an irregular geometry. The problem 
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Fig. 1 Heat.pipe inert-gas diffusion model 

is simplified by treating the decoupled system shown in Fig. 1. 
The heat-pipe vapor space is separated from the inert-gas cham
ber by a semipermeable membrane which is impermeable to the 
working-fluid vapor. The interaction is determined by a number 
of iterations on the common parameters of the final solutions. 

The analysis considers only the vapor space and ignores the 
effects of the liquid flow in the wiele This restriction is justified 
if it is assumed that only those geometries are treated which 
satisfy an overall heat-pipe design analysis. This study refers 
specifically to the cylindrical heat pipe whose design is presented 
in [11]. This is a h\gh-performance water heat pipe designed to 
transfer a heat load of approximately 640 Btu/hr at 190 deg F. 
Total length is 38 in. with a diameter of 0.75 in. Heat is added 
uniformly over a 24-in. length; the adiabatic as well as the con
denser lengths are 7 in. The wick consists of sintered metal of 
high thermal conductivity diffusion-bonded to the wall with an 
inner diameter of 0.433 in. The design analysis consisted of a 
one-dimensional model with a perfect vapOl'~inert-gas interface. 

In the operating regime of this heat pipe the axial-flow Reynolds 
number Rea:::; 1000; hence the flow is laminar. F1U'thermore, if 
only vapor-inert-gas combinations of equal molecular weights are 
considered, density and temperature gradients generally experi
enced in a heat pipe have second-order effects on the primary flow 
parameters, Equal molecular weights also imply uniform mix
ture viscosity if the collision diameters are similarly equivalent. 
Then for constant density and viscosity, isothermal flow, and 
negligible body forces the equations of conservation of mass, 
species, and momentum in axisymmetric cylindrical coordinates 
[Ire 

ou 1 0 - + - - (rv) = 0 ox l' or 

u- + v- = D12-- + D 12 - - 1'-
oC2 oC2 02C2 1 0 ( OC2) 
ox 01' ox2 r 01' 01' 

(1) 

(2) 

(3) 

(4) 

If the global-continuity equation (1) is used, then only one of the 
species-conservation equations needs to be included, in this case 
that of the inert gas (2). 

Due to the geometry and the behavior of some of the fit-ate 
variables in the operating regime of the heat pipe, boundary_ 
layer-type approximations may be made. For this purp08C the 
following dimensionless variables are defined: 

* 7rR2ph'2 
(5a) u = ---1b 

Q. 

v* 
27rR(lp - la)ph12 

Q. 
v (5b) 

P* 
7r 2R4ph122 

Q; p (5c) 

x* 
x 

x* 
lp 

x 

R 
for C2 and v (5el) 

1'* = 
l' 

R 
(5e) 

The reference velocity used to nondimensionalize u is the maxi. 
mum axial velocity based on the constant density p. The 
density p is based on the operating temperature and pressure in 
the inert-gas chamber at maximum heat load. The reference 
radial velocity is the condensing-mixture velocity at full heat 
load with full condenser surface available, The reference pres
sure is based on the reference axial velocity in the usual manner, 
It. should be noted that the isothermal assumption inherently 
implies negligible sensible heats and that the heat transfer is en· 
tirely accomplished by the vapor convection of latent heat of 
condensation, The axial distance is normalized by 'p, except in 
the consideration of the mass fraction C2 and the radial velocityt, 
where R is used. This is due to the fact that for a useful inter· 
face to exist sharp axial gradients must be allowed in C2 as well 
as v, which is inversely proportional to C,. 

Use of the dimensionless quantities transforms the governing 
equations to the following form: 

ou* lp 1 0 - + --- - - (r*v*) 
ox* 2(lp - Za) 1'* 01'* 

o (6) 

---... Nomenclature---..................... ----------------------
ac, be, Cc 

Cl u, bu, Cn 
C 

D12 
h12 

j 
Kp 
K, 
K, 

la 

constants in equation (22b) 
constants in equation (22a) 
mass fraction 
binary diffusion coefficient 
latent heat 
integer 
constant in equation (34) 
sink conductance 
constant in equation (34) 
length of evaporator and 

adiabatic section 
length of evaporator 
length of he[lt pipe 
mass of inert gas in heat pipe 
total mass of inert gas 
lal Llx 
lei Llx 
lp/ Llx 
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P 
Pl 
Pv 
q, 
q, 
Q, 

'/' 

R 

Ro 
'1'1 
Tv 
u 
v 

V, 
x = 

O( 
ex 

pressure 
partial pressure of vapor 
vapor pressure of liquid 
condenser heat flux 
evaporator heat fiux 
total heat load 
radial coordinate 
radius of heat-pipe vapor 

chamber 
gas constant of vapor 
liquid temperature 
vapor temperature 
axial velocity 
radial velocity 
inert-gas-chamber volume 
axial coordinate 
order of 
condensation coefficient 

~ dummy variable 
JI. viscosity 
v = kinematic viscosity 
p den:>ity 

Subscripts 

1 vapor 
2 inert gas 
o value at center of pipe 
l' = value at wall 

rn maximum 

Superscripts 

(i) iteration step 
* dimensionless variable 

first derivative 
second derivative 
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aft 
dx* 

du 

dx* 

+ 

+ 

R dC2 

2(lp - la) dr* 

/irRpDnhu\ Vd'Ci 1 _ 1 / ,* d C A " 

\ Q„ / L&S*2 + r* dr* \ dr*)_ 

'T» du* 

2{lp - L) dr* 

dp* 

dx* 

\ G. / L \ W dx*2 ?•* dr* V or*) J 

R dv* 
u* h 

^ T _ la) dX* 4(ZP 
la)2 

+ ( wR2hi2H \ 

2(l„ - la)Qe) 

* Z>v* 
v*— = -

dr* 

'd2v* d2v* 

dx*2 dr*2 

dp* 

dr* 

d 
+ d-r * Vv. 

(7) 

(8) 

(9) 

The order of magnitude of the dimensiohless coefficients in 
each equation is evaluated in view of the parameter values given 
in [HI- Although these parameters apply specifically to the 
referenced heat-pipe system, the order-of-magnitude analysis will 
in general hold for heat pipes of similar length-to-diameter 
ratios. Using these typical parameters it can be shown that 

(10a) 

(106) 

(10c) 

(lOd) 

(10e) 

(10/) 

It is important to note tha t the reference radial velocity is 
based on the full condenser length available. However, as the 
vapor-inert-gas interface is displaced toward the evaporator due 
to reduced sink temperature, the effective condenser length lp — 
Us shortened. The reference radial velocity should be based on 
this reduced condenser length. However, only in the extreme 
case, when the interface is within a distance of R/2 of the en
trance to the condenser, will the orders of magnitude of (10a), 
(Ukl), and (10/) be affected significantly. This case is eliminated 
from consideration in this investigation. Retaining only terms 
')' 0(1), the governing equations, when written in dimensional 
coordinates again, become 

2{lp - la) 

•wRpDuhu 

Qe 

irlphnfj, 

Qe 

R 

2(lp - la) 

R 

Tp
<<:1 

TrR2hnp, 

2(l„ - la)Q 

O(l) 

0(1) 

0(1) 

« 1 

- « 1 
e 

du 1 d 
— + - - (TV) 
dx r or 

0 

dd n d2C2 

dx dx' 

du du 
u — + v — 

dx dr 

1 dp 

p dx 

r dr \ dr / 

L 1 (r ^ 
r dr \ dr / 

(11) 

(12) 

(13) 

r = 0: 

r = R: 

U = Uo 

^ = 0 
dr 

u = 0 

v = 0 

v = / (?. , C2r) 

i Ci — Cm 

if-
C% — Clr 

(14c) 

(14d) 

The functional relationship in (lid) is to be established from the 
gas kinetic formula for condensation. The pressure gradient may 
be eliminated from equation (13) by noting that p is independent 
of r. Then the equation may be evaluated at r = 0 to obtain ah 
expression for dp/dx as 

1 dp duo 

p dx dx 
lim \>- * (r d-wN)l 
r-,0 L»' or \ d r / J 

(15) 

Momentum and Concentration Integrals 
To obtain solutions, the Karman-Pohlhausen integral method) 

common in boundary-layer analysis, is applied. In the usual 
application of this technique integration is carried out across the 
boundary layer using assumed profiles for the dependent vari
ables. Thereby the partial differential equations are reduced to 
ordinary differential equations with the boundary-layer thickness 
as one of the dependent variables. In the present analysis the 
final variables will be the axial velocity at the pipe centerline, u0, 
and the mass fraction of the inert gas at the wall, Ctr. 

To apply the method, equations (12) and (13) are multiplied 
by r and integrated with respect to r from 0 to R. Making use 
of the boundary conditions and equation (15), these integrals 
become 

CR oc, „ r 
1 ru dr = Dn 1 

J o ox Jo 

CR d«* , CR 

I ru — dr + I 

Jo ox Jo 
lim [^ » ( 
r^o \_r dr \ 

R °*C* J , r T T dr + 
dx1' 

R2ui> duo 

B»R & ) 
\ dr /r-R 

du 
rv — dr = 

dr 2 dx 

- - H m | ~ -
du V 

or). 
+ vR (-) 

\br /,-R 

(16) 

(17) 

The radial velocity v can be eliminated from equation (17) by 
applying the continuity equation. Multiplying equation (11) 
by r and integrating with respect to r from any point r to R yields 

Rvr + 1 r — dr 

Jr 0X 
(18) 

When this is substituted into the second integrand in equation 
(17) and integration performed by parts, the integral becomes 

J" 
Jo 

du , 
TO — dr = 

or 
-Rv,Uo — U0 

rR du , cR 

I r — dr + I r 

Jo dx Jo 

R du , 
•u r ~ dr 

dx 

(19) 

Substituting this back into equation (17), the concentration and 
momentum integrals become 

f 
Jo 

Jo 

dC2 J 
ru dr 

dx A 
J o ox2 \drjr-

*B du , 
ru — dr ~ uo dx I 

R du 
r —- dr 

dx 

= — — lim 
2 r-,o 

I A (, ^ \ 
r dr \ drJ 

Rvruo — 

+ vR 

R2Uo duo 

2 dx 

du 

dr Ir-R 

(20) 

(21) 

' 'Undary conditions that must be satisfied are 

dC2 = 0: 

= L 

u = 0 

M = 0 

0 

v = 0 

dx 
= 0 

dCt 

dx 
= 0 

(14a) 

(146) 

Application of Karman-Pohlhausen Method 
To apply the Karman-Pohlhausen method it is necessary to as

sume a form for the distribution of velocity and concentration 
across the pipe. The simplest polynomial expressions that 
satisfy the required boundary conditions are the following quad
ratic forms: 
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u(x, r) = Uo(x) 

C,{x,r) = do(x) ( l - ~ (i - ~ ) + a, R2 

(22) 

(23) 

By assuming profiles separately for u(x, r) and Ci(x, r), the inter
action between convection and diffusion takes place in the mean 
instead of locally. This is consistent with the boundary-layer-
type approximation for heat pipes that has ratios of R/lp <<C 1. 
The assumed profile for velocity is the usual parabolic form for 
fully developed laminar flow in a pip"e. The actual flow in the 
evaporator and condenser is dynamically equal to pipe flow with 
injection or suction through a po2'ous wall. This has been 
studied by Yuan and Finkelstein [12], and their results indicate 
that for the low radial Reynolds numbers encountered here, 
Re r = 2.4, the velocity profile is close to the parabolic shape. 
Weissberg [13] analyzed laminar flow in the entrance region of a 
porous pipe. His results are given in terms of two parameters, 
Re,- and f, a dimensionless axial coordinate. For the heat pipe 
under consideration f = 0.6 for all conditions of heat load up to 
the design limit. For the operating conditions characterized by 
these parameters there is only small variation from the parabolic 
profile. Although in the interface region Re r decreases rapidly 
so that Weissberg's analysis is not strictly applicable, it is ex
pected that as f approaches unity the profile approaches para
bolic. A similar argument is assumed to apply to the concentra
tion profile. 

Upon substituting the assumed profiles, equations (22) and 
(23), into the concentration and momentum integrals, equa
tions (20) and (21), and performing the integrations over r, the 
following nonlinear ordinary differential equations result: 

12 tv 
Uo = _ _ _ 

3D12C20 ~h S-DiaCV' — 2woCao 

2ADn 

+ R1 

(24) 

(C2r - C20) = 0 (25) 

Note that the radial velocity at the wall, v,, is the forcing func
tion for the system. I t can be evaluated in terms of the boundary 
conditions by considering the heat balance. In the evaporator 
this velocity is directly proportional to the heat flux, which is a 
constant, and is independent of the concentration. Since the 
sensible heat is neglected, the heat balance in this section can be 
expressed as 

(pifl)iAl! = qe 

For a binary mixture 

ftVr = (/>l«l + f>lVl)r 

But (vi)r = 0, so that from-equation (26) 

Q-
vr = ~ 

pfia 

(26) 

(27) 

In the adiabatic section there is 210 heat transfer, tha t is, v, = 0. 
In the condenser section the phenomenon is more complex, since 
in a self-controlled heat pipe the heat rejection is a function of 
axial location and depends on the mass fraction itself. The con
denser heat flux can be expressed in terms of the condensed-liquid 
temperature Ti, which also is a function of location, and a sink 
temperature TB, which is a constant. 

qc = Ks(Ti - T.) (28) 

The sink conductance Ks generally depends on Ti as well as Ts. 
The present sink design, however, consists of laminar flow of 
water through a coil of tubing wrapped around the condenser. 
Temperature rise of the cooling water is negligible. In this case 
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can be considered to be constant. Replacement of qe by <jc {̂  
equation (27) yields an expression for v, tha t is valid in the 
condenser. 

K. 

phi 
(Tt - T.) (29): 

The new unknown introduced, Ti, can be related to the mRSS' 
fraction at the wall, C2,, by employing the kinetic formula for 
condensation (or evaporation) which can be expressed as 

hn 
- (Pi - p»)r-a (30); 

V2TR„T1 

The partial pressure of the vapor, plt can be written in the form 

p, = pR<,Tv{\ - ft) (31) 

At this point it is recalled that the flow field is considered to be 
isothermal. I t is recognized that this is not consistent with the 
assumption of constant density and the perfect-gas equation of 
state since an axial pressure variation is allowed which is the 
prime driving force for vapor transport. However, the range of 
Tv is limited here to relatively small values, whereas C2 may take 
on values between zero and unity. Hence pt is determined 
mostly by C%, and Tv may be taken to be a constant. The vapor 
pressure of the liquid is a complicated function of the liquid tem
perature Ti. Over a relatively small range of Tt, T. < T; < T,, 
the functional relationship can be approximated by an exponen
tial for mathematical convenience as 

p»i = K„ exp (KtTi) (32) 

where Kp and Kt are taken to be constants and depend on the 
working fluid under consideration. Combination of equations 
(28), (30), (31), and (32) results in the following relation between 
Ti and C2r: 

ochu 

\/2irRdTl 

{pRgTv{l - Cir) - Kp exp (KtT,)] 

Ks{Tl - T.) (33) 

In this form no solution for Ti is possible. To facilitate the analy
sis the following expansions are made: 

VT 

exp (KtTi) = exp (.K,T.){l + K,(T, 

(34i 

- T.) 

0[Kt{Ti r 8 )H (35) 

If Ti ~ Ts is limited to small values such tha t Kt(Ti - T.) = 
O(0.1), the higher order terms in the expansions may be neglected-
Substitution of the truncated series into equation (33) yields a 
quadratic expression for Ti — 1\. 

'akitKpKt exp (K,T,)~ 

2TS \/2irRaT, 

ahn[pRaTv{l -

(Ti - T,)' { 
C2r) 

{aha 
2TS V27rRaTs 

[PRaTv(l - Cir) 

cthyKpKt exp (KtTj) 

^2-KR,T, 

K, exp (K,T.)] , K \ {Ti _ u 

Kv exp {K 

V2irR,,Ts 

«r.)]) = 0 (36'' 

For the heat pipe under consideration the coefficients in t"6 

equation have different orders of magnitude. Using tn* 
parameters of [11] again 

ah,KpKt exp (KtT.) _ 

2TS V ^ T T ^ F , 

ahnKpKt exp (KtTs) 

V2TR„TS 

O(10-3) 

0(1) 

(37* 
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J 
/ 

QA 0. 

J 

/"" 

\ 0 . 8 / 

/ 

for U < x < la 

\5RDaphiiJ 
(446) 

for ia < x < Ip 
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LOCATION IN CONDENSER, x, IN. 

Fid. 2 Inert-gas mass fraction at the wal l as a function of location in the 
condenser for various heat loads 

ahnlpRBTv(l - Cir) - K„ exp (K,T.)] 

6M, 

+ 

3RKsRg TV 

+ 
3RKs 

2huKpKt exp {K,T.) 2phuK 

3RK.R, 

+ 

huKpKt exp 

[ I2qele + 12XS 

hkav) °2r\Cir"+ ZRKSR„TV 

haKpKt exp {KtT.) 
(ft/)2 

[ 5Rphw 5Rphi 

r> r PRaTv{i - clr) _ j _ - | | 
Ju lKpKtexp(KtTs) K,\ k] 

2T, VlirRaT, 

ahl2[pR0Tv(l - C2r) - Kp exp (KtT,)] 

V2rRaT, 

K, = O(10-") 

T,- T,= O(10) 

= O(10-2) (37c) 

= O(10-6) (37d) 

(37e) 

(37/) 

2r , [i RI 
2r L2 2D12h12Kp. 

RKsRaTv 

+ 
RK3 

K,exp{KtT,) 2BnphxiK 

+ 
RKsRaTv 

r RK.. 

\_2DuhnKpK, 

DiJiiiKpK, exp {K,T.) 

RnTv 

exp {KtT,) 
(1 - C ) -

242>12 

RK, 

2DaphnK 
] = » 

(44c) 

Then an approximate solution, as determined by the most sig
nificant terms, is given by 

The boundary conditions that remain to be satisfied after trans
formation are: 

Tl - T. 
pR,Tv(l - Cb) _ J_ 

KpKt exp {KtT.) K, 
(38) 

x = 0: C2/ = 0 

a; = L: <V = 0 
Substituting this for Ti — T, in equation*(29), v, in the condenser 
section becomes 

(45a) 

Kp exp (g , r . ) 
1 ~ — ^ T T - (4S6) 

K, 

phu 

PRaT,{l - Ctr) _ J_ 

.ifpK« exp {KtT,) Kt_ 
(39) 

The radial velocity at the wall has thus been expressed in 
terms of the mass fraction at the wall, C2r. The mass fraction at 
the center, C2o, can be related to C2r by considering the mass 
transfer at the wall. Mass balance requires that 

pvT = 
pA /dCA 

\ 3r / r . « 
(40) 

Differentiating equation (23) with respect to r and evaluating the 
derivative at r = R 

( .. ) — D (Cir — Cm, 

Solving equations (40) and (41) for C20 

(41) 

The requirement on C2r is a result of the condition that v — 0 at 
a; = Zj,, equation (146), and is obtained by setting equation (39) 
to zero. I t is a statement of overall heat balance and that the 
mixture is in equilibrium with the liquid at the end of the con
denser. 

Inert-Gas-Chamber Interaction 
Up to this point it has been assumed that the operating pres

sure and temperature levels are unaffected by the presence of 
inert gas in the heat-pipe vapor space. To estimate this effect it 
is necessary to obtain the total amount of inert gas diffused into 
the pipe. This is given by 

»ie rip 
m2 = 27rp | | rddxdr •IT 

Jo Jo Using equations (22), (23), (27), (39), and (42) for C3, this can be 
written in the form 

(42) TO2 

The terms in equations (24) and (25) have now been reduced to 
•unctions of C2r. These two equations can be combined into one 
by integrating (24) as 

= TTR*P ( 1 - <Tfg' ) f ' <72rd£ + irR*p f ° CW£ 

I:HL -h TVR2P 
RK8R0Tv 

2D12hnKpKt exp {KtT,) 2DliPhaKt 

RKaRgTv 

Uo = 
12 
5R Jo 

<SM (43) 
2Dl2hnKpKt exp {KtT.) 

Cir ! c2r« d£ (46) 

Md using equations (27), (39), and (42) in the appropriate sec-
"°ns of the heatjjipe. After substitution, differentiation, and 
rearrangement, the final governing equations for the three sec-

, "0ns, respectively, become 

| f o t 0 ^ a ; < 7 . 

1 2 \ ^ » , (SDuphii — Rq, 
-•)-+(: 4Duph 

+ 

- I Xdr 

I 5Dnphi2 \ 

\4Dnphi2 - Rq,) 

For the hot non-wicked reservoir the pressure and temperature in 
the inert-gas chamber are equal to those in the heat pipe itself, 
and the equation of state can be written as 

{mc — m2).ffi„ 
P = r. 

This equation should be satisfied by p and T„ at all times. In 
this analysis it is used as an iterative correction by writing the 
equation as 

C2r = 0 (44a) p W = ( 3 ~ «««-») TfW 
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That is, m2 is always based on the previous solutions of CV 
Since p and T„ are not far from equilibrium at any time, the ex
ponential approximation of equation (32) is applicable 

p<*> = Kp exp (if,7V''>) 

or approximately 

p « = Kp exp (KtTJ<-»)[l + KtW - TV'"")] (48) 

Combining equations (47) and (48) and solving for 7VV) 

TJ.i-0 
Tv('i = 

1 

K, 

(m„ — W ' - " ) ^ 

VCKPK, exp (K(IV'-D) 

(49) 

The iteration is continued until the changes in J V " and p(l> be
come negligible. At this point the pressure p, axial velocity u0, 
radial velocity v„ and centerline mass fraction C20 are obtained 
directly from equations (15), (43), (27), (39), and (42) respec
tively. 

Numerical Solution 
The equations (44) describe the behavior of Ca,- in the heat pipe. 

In the evaporator and adiabatic sections they are linear differen
tial equations. In the condenser it is a nonlinear integro-dif-
ferential equation to which no analytic solution is possible. A 
computer program using the finite-difference technique is there
fore employed here. Using simple central and forward dif
ferences, the equations become 

CV^ 2CV 

J = 2, 3, 

cv-1 

3Dnphn 

;Ne 

Rqe 

5RDnph 

x (CV - cv-i) + 

for le < x < la j 

C V + 1 = 2CV - CV 

4Di2p/ti2 — RqL 

bDwph 

N„ 

4:D12ph, 

. ., Na 

Gqde 

(j + 1)(AZ)2 

(AX)*CV 
Bq. 

(60a) 

5RDaphi2 

j = Na, . . ., Np 

(A,Y)(CV - CV->) (306) 

fraction is so close to zero away from the interface regioi i 11, j 
even the use of double precision results in fast divert-ii-. 
Therefore the initial point has to be shifted toward the inti i \.,, 
This shift results in an additional complication in that at tin •,. 
initial point neither the slope nor the magnitude is known. '|'|,. 
solution now requires double iteration. The error in equ >;i... 
(52) grows rapidly, but sufficient accuracy is available wi' !i ,lM 

computer so that the end boundary conditions can be sa• i-• i..( 
with an acceptable deviation. 

Results and Discussion 
To illustrate the method of analysis and the effect of difi'i-i,,, 

on heat-pipe performance, the computer program was appli. 11., 
the configuration selected in [11]. The present analysis pei .if,., 
only to water as the working fluid, an operating temper!..:,.. 
level Tv of 190 deg F, and a design heat load (Qe)m of 640 B1.. |.r 
Since the analytical model assumes equal molecular weigl .- •'., 
the vapor and control gas, neon would be a good choice. 

The variation of the inert-gas mass fraction at the wa'l. i'.t 
with location in the heat pipe, x, is shown in Fig. 2 for a n .-in.; 
of heat-load ratios Qt/(Q,)m, a sink temperature of T, = 160 df̂ ; 11 

and a diffusion coefficient Da = 0.1 in.2/sec. The shapes ! I... 
curves are completely similar for all of the heat loads show , v«\ 
are equally spaced. The diffused region extends over a leu., Ii ..j 
about 1.25 in. The equilibrium value at the end of the pr«' f., 
the case considered in this work depends only on the sinl. i'... 
perature, which for T, = 160 deg F is 0.471. I t can be obi-'T>.| 
that at the heat-load ratio of 0.8 the equilibrium value Ivi- •••!• 
been reached at the end of the pipe. According to the rv i'1."-
matical model no solution exists ill this case with the •• un 
permeable membrane and the constant pressure and tempe1^'.!!!' 
assumed in the convective-diffvision analysis. The ph' -.• :', 

significance in the absence of the membrane is that diffus • •" 
the vapor into the inert-gas chamber would take place, nn-iij 
the pressure level and readjusting the equilibrium siti.'ii-.-i 
Therefore diffusion has the effect of limiting the maximum lnu1 

transport capability of the heat pipe. 
I t should be noted here that the aceurac3' of this solu'^'i I 

limited to relatively small values of K,(TV — T„), due ' • • 1»-
series approximation of equation (35). This also implies !• *•'• 
values for the equilibrium inert-gas mass fraction Ci,(lp). '1 n«-it . 
fore, in the absence of the semipermeable membrane a suffii •'> ii i"- •' 
large amount of vapor would diffuse into the inert-gas ch .'::•' • 
before the establishment of equilibrium. This in turn -.--• .i:i-. 

CV'+1 = 2CV - CV~i 4- (Axy 
6£,a + 

3RK. I 

2Ktphn V 

pR,Tv 

X 

2K 

SRKsRgTv 1 

+ 
3RK,R,TV 

Kp exp (KtT,)j KpKtKn exp (K,T.) 

' 2iq.le 24K,R„T. 

CV 

K„Kthn exp (KJ\) (AX) ' 

24/C 

(CV - Ctr*-1)1 

5Rp!m ' 5RKPKthn exp (KtTs)
 ( X) . ^ ( 1 ^ 

5RKtphi2 
(AX)(j + 1 - N.) 

RKSRQTV 1 

+ 
RKSRQTV 

+ 2 2Di2KpK,hu exp (K,T,) 2D 

J LDnKvKJiv exp (KtT,) (AX) 

CV" 1 ) •^—) - J - (c •• 
^KtphJ (AX) 2r 

(1 - (V)(C*-> - CV^ 1 ) 

RK. 

R* 

RKsRs,Tv 

WuhuKvKt exp (KtT.) 

2DuphnKt 

(1 - CJ) 

In this formulation, this is a mixed initial-boundary-value prob
lem. The slopes are zero at both ends of the heat pipe and the 
magnitude of the mass fraction is known at the end x = l„. At 
the initial point x = 0 the magnitude of the mass fraction is un
known and an iteration is required, that is, with an assumed initial 
magnitude and zero slope the integration is carried to the end 
point, and if the required conditions are not met an indicated 
correction on the initial assumption is made. However, for 
typical conditions in an operating heat pipe the inert-gas mass 

raise the operating pressure level and counteract the small l':i' 
sure drop normally expected in the self-controlled heat pipe w"' 
the heat load is lowered. The effect of vapor in the inf 1 -r 
chamber is not accounted for in the analysis outlined here; I"'1" 
only large values of Tv — T, can be compared with the "•'''' 
physical situation where no semipermeable membrane is ""-' 
However, the influence of the diffusion on the real heat pi}"' l" 
be determined by the present analysis even though strict aci '"•" 
is only obtained for small values of K,(TV - T.). The •'•''•,-
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Fig. 4 Vapor-inert-gas interface as affected by diffusion 

predicted here must be the same, with some error in the location 
oi the vapor-inert-gas interface. 

The effect of sink temperature Ts on the vapor-inert-gas inter
face is shown in Fig. 3. Lowering the sink temperature has the 
effect of reducing the width of the interface diffuse region. At 
T, = 170 deg F the interface width is about 1.50 in., while at 140 
(leg F it reduces to about 1.0 in. Lowering sink temperature 
has the additional effects of raising equilibrium mass fraction of 
the inert gas at the end of the pipe, CWW, and of shifting the in
terface toward the evaporator end. The shift and narrowing of 
the interface is due to the higher rate of condensation to the colder 
liquid in the wick. Therefore, indications are that the colder sink 
temperatures minimize the effects of diffusion. 

The effect of diffusion coefficient on the interface is shown in 
Fig. 4. As is expected, an inert gas with a higher diffusion co
efficient exhibits a more diffuse interface with an accompanying 
reduction in the maximum heat-transfer capacity. Actually, at 
the operating temperature level of Tv = 190 deg F the diffusion 
coefficient does not vary as much as is indicated in the figure. 
At lower temperature levels, however, the value of D 12 can in
crease considerably, since it is inversely proportional to density. 
Low-density effects are encountered during start-up of a heat 
pipe, indicating the requirement for a thorough transient analysis 
with diffusion. 

Figure 5 illustrates the difference in value of the inert-gas mass 
fraction at the pipe wall and at the pipe centerline. The con
centration gradients are of the same order in the axial and radial 
directions. Therefore, as postulated, both are significant in the 
description of the interface profile, and the two-dimensional ap
proach seems warranted. 

Figure 6 shows the self-control performance of the heat pipe 
with diffusion for various sink temperatures. I t should be re
eled that this was obtained by neglecting the possibility of the 
Presence of working-fluid vapor in the inert-gas chamber. The 
"fop in the operating-temperature level is less than about 3 deg F 
lor the lowest sink temperature considered, Ts ~ 140 deg F, for 
I heat-load ratios. The dashed line indicates the maximum 
•Cat-load ratio as reduced by the diffusion. Finally, based on 
Us analysis, it can be concluded that for the water heat pipe 

^'sidered with neon control gas the diffusion does not impair 
10 self-control feature. I t does reduce the total heat-load 
,ll'acity somewhat depending on the sink temperature. 
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Fig. 6 Self-control performance of the heat pipe with diffusion for 
various sink temperatures 

A heat pipe with the configuration analyzed here has been 
fabricated, but testing has not progressed to the point where 
comparison with prediction can be made. Valuable data have 
been reported by Kirkpatrick and Marcus [14] for a heat pipe 
that was similarly controlled by a hot reservoir. However, no 
direct comparison with their results is possible due to two major 
differences. The first is the nonlinear cooling by radiation of a 
finned condenser in contrast to the constant conductance of the 
water cooling coils. The second is that the temperature differ
ences between evaporator and sink are larger than is allowable in 
the present analysis due to the approximations of the functions in 
equations (34) and (35). 
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Heat Transfer during Vessel Discharge: 
Mean and Fluctuating Gas Temperature 
A gas, discharging from its container through an orifice to the atmosphere, is shown to 
experience a temperature history that is strongly dependent upon the heat transfer from 
the container wall. Using a quasi-steady free-convection model for the instantaneous 
conductance between the wall and gas, a satisfactory correlation results between experi
mental and analytical mean gas-temperature response during discharge. For the 
special case of choked orifice flow and constant wall temperature, the mean temporal 
temperature of the gas remaining within the vessel is shown to depend upon just two 
parameters. The onset of the oscillating component of gas temperature is shown to 
occur at times which correspond to the dramatic growth of the diffusional thermal 
boundary layer on the wall, and this finding is in agreement with the Malkus theory of 
turbidence. The relative size of the temperature oscillations during discharge is shown 
to reach a maximum at the time when the scale of dimensionless temperature, a param
eter essentially dependent on the instantaneous mean gas temperature, is a maximum. 

Introduction 

I HERE ARE many practical applications in which a 
compressed gas is allowed to discharge from a vessel through an 
orifice into another region of lower pressure [1-3J.1 The wall-
to-gas heat-transfer mechanism, which controls the mean 
temporal temperature of the gas within the vessel, has been 
identified as free convection [4]. However, apparently no prior 
study has validated the application of a quasi-steady free-
convection model during discharge, especially when the fluctua
tions in the gas temperature are included. 

In the present study, both the mean and fluctuating gas-
temperature components were considered. In determining the 
mean gas-temperature response, three factors were included 
which were not previously addressed. First, the dependence of 
'lie mean gas temperature on the unchoking of the flow was de
termined. Second, effects of wall-temperature change were in
cluded and assessed. Third, variation in the gas properties, 
'•6., density, viscosity, and thermal conductivity, were considered 
® an integral par t in assessing the validity of the free-convection 
model. Examination of the fluctuating component of the gas 
''mperature revealed several significant findings. First, the 
'"iset of the fluctuations was found to correspond to the rapid 
Wwlh of the thermal-diffusional layer on the wall of the vessel, 
9'liich is in accord with the theory of Malkus [5]. Second, the 
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developed fluctuating component of temperature was found to 
correlate with certain mean parameters which have previously 
been introduced for the problem of the steady heating of a gas 
from below [6]. Third, under certain conditions the fluctuating 
component of gas temperature has a significant effect on the 
mean value. 

The experimental apparatus, consisting of a cylindrical vessel 
with an orifice at one end, was operated for initial gas pressures 
in the range 70 to 370 atm. Two gases, nitrogen and helium, 
were discharged. Under these operating conditions, a system
atic study could be made of both the mean and fluctuating gas-
temperature components and their influences on the discharge 
process. 

Formulation 
Mean Gas-Temperature Response. Consider a vessel of wall thick

ness L, mass Mw, and specific-heat capacity cw containing a gas 
initially at pressure p0 where both the wall and the gas are ini
tially a t the same temperature To. Beginning a t t ime t = 0 the 
gas is allowed to exit from the vessel through the orifice of area 
Ai into the surroundings maintained at atmospheric pressure. 
In seeking the temperature response of the gas remaining within 
the vessel owing to heat transfer, the temporal gas temperature 
is assumed to be uniformly distributed throughout the entire 
volume V of the container. 

The energy equation applied to the control volume represented 
by the volume V is given by 

mo 
cwT„ 

pV dm 

mmo dr 

du 

'dr 
(1) 
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The experimental data discussed in subsequent sections were ob
tained under conditions where ideal-gas behavior could be as
sumed. Hence, using the equations of state for an ideal gas 
allows equation (1) to be written as 

Mvfiu ( dvw\ _ 

bx+Jx + = o 

_ dm fi 
T— -| 

dr (7 — 1) dr ? (2) 

Two additional specifications are required before a solution to 
equation (2) can be obtained. One of these is the wall-tempera
ture gradient (dvw/dx+)0. To obtain this gradient, the heat-
conduction equation within the wall, 0 < x + < 1, must be 
solved; tha t is 

dz + 2 dr (3) 

subject to the initial condition vw = 1 when r = 0, and to the 
boundary conditions on which discussion is deferred.2 

The second specification needed to solve equation (2) is the 
mass rate of flow, —dm/dr. The flow is choked (Mi = 1) for 
times 0 < r < r c 

T R E F 
A P A T M / 

TBEF = — —-
ou,V_ 

7 + 1 

2/VygRTo 

- 1 

(7 - » ( ^ r ~ " ^ 
(4a) 

(4b) 

and unchoked for times r > T„, during which time the exit-orifice 
Mach number is given by 

M, 
y - 1 

( p° -f. \ 7 _ 1 
I mT I l 

\PATM / 

(5) 

With Mi = 1 for 0 < r < rc and Mi given by equation (5) for T > 
TC, the mass rate of flow is specified by 

2 Equation (3) is written for planar walls, although it still has 
validity for curved walls if the wall thickness is small compared to 
the characteristic vessel size. 

dm / 2 \ ? 

~ A7 = V T ^ V TREF 
M I 

1 + 

(^H 1 + 

T+l 
2 ( 7 - l 

Finally, the boundary conditions for equation (3) mi 
considered. Taking a free-convection heat-transfer coel 
ho on the outer surface of the wall (at x + = 1) 

bx~ 

h0L 
+ — (vw kw 

1) = 0, = 1 

At the wall-gas interface, where x+ = 0, a quasi-steady ( 
lent) free-convective heat-transfer coefficient h(r) was tak 

h(T)Del 'gPchs?r 

. VHT) 
W 0 , T ) - T]/T 

The gaseous thermal conductivity k0 and kinematic visa 
are given by the instantaneous values below: 

kjkgo = Vf v/vo = Vf/m 

where kgo and v0 are initial values of those properties, i 
tively. If this (turbulent) free-convective coefficient h(r 
suffice in describing the model, the values for the constant! 
n in equation (8) should be: (a) independent of timedurii 
one discharge and (b) insensitive to the initial conditi 
pressure, temperature, volume, or type of gas. The val 
c and n, determined by correlating analytical and experii 
results, were found to be 0.105 and 1/3, respectively, over 
range of initial gas pressures for the two gases; thus both ( 
were adequately met (see Discussion of Results for furtl 
tails). Note tha t for the value of n = lls the characl 
dimension Deh in equation (8) is eliminated, and thus the 
of this analysis do not depend upon the shape of the con 
The boundary condition at x+ - 0 is thus given by 

ox+ kw 

0 

With the initial conditions v* = T = m = 1 at the time 
equations ( l ) - (9) completely formulate the problem. 

•Nomenclature-

Ai = effective discharge area of orifice 
c = constant in equation (8) found 

to be 0.105 
c« = specific heat capacity at constant 

volume for gas within vessel 
cw = specific heat capacity of vessel 

wall 
DCh = characteristic vessel size, approxi

mately 2Z 
g — acceleration due to gravity 

h(r) = temporal mean heat-transfer co
efficient at wall-gas interface 

ha = heat-transfer coefficient on outer 
wall of vessel 

k = thermal conductivity 
L = vessel wall thickness 
m = mass of gas remaining within 

vessel normalized to initial 
mass 

Mi = Mach number at discharge (ori
fice) area 

Mw = mass of vessel wall 
n = exponent in equation (8) found 

to be V3 

p = pressure of gas within vessel 
Pr = Prandt l number of gas 

(g¥v\n(vw{0,r) - f V + » 
Q ca 

7Pr \" /y„ 

V) \ 
star 

;h n 

/ f i n 

T ) 

T\ 

R = gas constant 
Raa = Rayleigh number, 

g53Pr/f„(0, r ) -

"2 \ T J 
t = time after initiation of discharge 

iREF = defined by equation (4b) 
T = gas temperature within vessel 

normalized to initial value 
u = mean gas internal energy 

Mo = (cegQ)1^ 
vw = vw(x+, r ) = wall temperature 

normalized to initial gas tem
perature 

V = vessel internal volume 
x+ = coordinate measured into vessel 

wall from gas-wall interface 
normalized to wall thickness 

Z = distance from wall to temperature 
sensors, 0.87 in. = radius of 
cylinder 

Z« = (a'/gQ)1'1 

a = thermal diffusivity of the f 
7 = ratio of specific-heat cap 

for the gas 
T = Fourier number, awt/L2 

v = kinematic viscosity of the j 
p = density of gas 

do = [Q'/(<W)] , /4 

So mux = maximum of the functior 
time 

a = i!/i!REF 

Subscripts 

0 = initial conditions of the g* 
ATM = conditions in discharge re: 

c = choked conditions 
w = properties of the wall 
g = temporal gas properties 

vessel 
1 = refers to thermocouple • 

to the orifice along e 
cylinder 

2 = refers to thermocouple it 
from the orifice along < 
cylinder 
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Fig. 1(a) Ni t rogen temperature response w i t h i n vessel; sol id curves are 
data measured at t w o locat ions a long ax is of cyl inder; broken curve is 
the mean predicted response for c = 0.105, n = Vs 

method of solution is that of [8], with particular details described 
in [9]. The results for three particular cases are shown in Figs. 
1(a), 2(a), and 3(a). 

With the recognition that m depends only weakly upon T, it 
is possible to decouple equations (2) and (6) in calculating T. 
If in addition a constant wall temperature is taken, Mwcw/ 
(wioffi) 2> 1, and choked-orifice flow is taken, a closed-form solu
tion for T follows: 

T 
e-Ah(y,u) 

"(1 + a)1 [1 + Ah(A, 7, <•>)] 

where 

A = (y - 1)TREF C — 1 

m<,B kw \ v0
2 J 

h fW,7) du' 
Jo 

(10) 

(11) 

(12) 

Jo 
( l + c o ' ) 2 f ( o ) ' , 7 ) exp[A r 

Jo 

t(u",y)du"]du' (13) 

f3 = OJ(2 + w) / ( l + w ) ^ - 3 ' / ^ - 1 ) (14) 

The results of equation (10) were found to be in excellent agree
ment with the exact solution for times less than the time for the 
flow to unchoke. Further discussion is deferred regarding the 
constraints leading to equation (10). 

Onset of Fluctuating Component of Gas Temperature. Figures 1(a), 
'(a), and 3(a) show tha t the fluctuating components of the gas 
temperature within the container begin at times corresponding 
approximately to «/«REF = 0.2, 0.3, and 0.4, respectively. There
after, they grow and have the same general character as the 
fluctuations reported for the case of the steady heating of a gas 
'rom below (for example, see [5]). As the mean gas temperature 
aPproaches T = 1, the fluctuations appear to diminish in size 
W'ltil the oscillations are ho longer discernible. The Malkus 
theory of turbulence [5] describes the onset and existence of 
l«ese fluctuations as the detachment of columns of hot gas from 
'he edge of the conduction layer on the wall and the erosion of 
'hese rising columns by contact with the surrounding cooler gas. 

" the Malkus theory has validity for the present case, one can 
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anticipate tha t there should be some correspondence between the 
onset of fluctuations and the size of the conduction layer which 
grows on the wall of the container below the sensors. In fact, 
the growth of the thermal layer on the wall (determined below) 
will be shown to be dramatic at times tha t correspond to the 
onset of temperature fluctuations. 

Assuming the curvature of the wall slight and a one-dimen
sional thermal-diffusioiial-Iayer growth, the conductive boundary 
layer is described by the following: 

(15) 

where the term on the right-hand side represents a temporal heat 
sink within the diffusional layer as a consequence of discharge. 
The coordinate y is the distance measured from the wall into 
the diffusional layer and / is the excess temperature 1 — T/T0 

within the layer. Since the objective is to determine the dif-
fusional-layer thickness prior to the onset of fluctuations, the 
presence of heat transfer outside the diffusional layer can be 
neglected because the terms 011 the right-hand side of equation 
(1) can be shown to dominate the term representing heat transfer 
in equation (1). Hence, for ea.ly times (approximately less than 
about 0.2 2REF), it can be shown from equations (2) and (6) that 

T 
(1 + «AREF) 2 

0 < 
iREf 

< 0.2 

P. 1 

(1 + <ABEF> 2 7 / ( 7 - 1 ) 
0 < < 0.2 

£REF 

(16) 

(17) 

If the pressure is assumed to be uniform throughout the dif
fusional layer, and the variation of gas conductivity with tempera
ture is considered, equation (15) becomes 

p0c» by \ byj 

dt 

2/h 

(1 + i/teEF)3 

(1 + i / t e E F ) 2 ^ - ^ ! - / ) 
= 0 

(18) 

The boundary conditions are given by 

/ = 0, all y, when t = 0 

/ = 0, all t, when y = 0 

1 — f-+ T, all t, asy-*<*> 

(19a) 

(196) 

(19c) 

Since the growth of the thermal diffusional layer is sought, an 
approximate method [8] which introduces a diffusional-layer 
thickness has been chosen to solve equation (18). The profile 

i-\v/t 
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Fig. 2(a) Nitrogen temperature response within vessel; solid curves are 
data measured at two locations along axis of cylinder; broken curve is 
the mean predicted response for c = 0 .105 , n = 1/3 
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Fig. 2(b) Wall growth of the thermal diffusion layer 8 for nitrogen and 
the correspondence to the onset of fluctuations 

vith 

/. = 
(2 + l/lRW)t/tR1 

(1 + <AREF) 2 

satisfies the constraints of equations (196) and (19c). Using 
equation (18), integrally averaged over 5, then gives 

dS2 fc^REF 

dio poCv 

8<52 1 + 

(1 + c o ) y 

(2 + oi)u>' 

(1 + w ) 6 _ 

T 

(1 

1 IX 
CO)6 

1 

(2 +L0) 2co(2 + co)(l + w) 

(20) 

Equation (20) is linear in 52 and therefore may be solved using 
quadrature. For the cases shown in Figs. 1(a), 2(a), and 3(a), 
5 = 5(i) was calculated, and the results are shown in Figs. 1(6), 
2(6), and 3(6), respectively. For very early times (approxi
mately 0 < t/lREF < 0.01), 52 = 4(fco/poc„)i, but near the times 
when the fluctuations become discernible (of order of t/tnEF = 
0.2), 52 grows roughly according to (1 + i/teEF)5-

Fig. 3(b) Wal l growth of the thermal diffusion layer 8 for helium and the 
correspondence to the onset of fluctuations; the dotted curves cbrrect for 
the time lag, A w = 0 .06 , in measuring 7i and % owing to cellular move
ment between wa l l and sensor 

Developed Fluctuating Component of Gas Temperature. Once the tem
perature fluctuations have developed, it is desirable to determine 
the mean quantities upon which they depend. For the problem 
of the steady heating of a gas from below, it has been shown (see, 
for example, [5]) t ha t three mean quanti t ies suffice to describe 
the root-mean-square of the fluctuations, AT2^2- In terms of 
the previously introduced mean temporal quantities, these are a 
scale of length Z0, velocity uo, and dimensionless temperature 0o, 
this lat ter scale being independent of pressure for n = Vi

lli the problem of the steady heating of a gas from below [6], 
the root-mean-square of the temperature fluctuations, non-
dimensionalized by T0T60, did correlate with the parameter 
Z/Zo, where Z was the distance between sensor and heated sur
face. No such correlation existed for the present case of transient 
heating (by virtue of discharge). However, t he parameter &> 
behaved in t ime similar to the relative size of the fluctuating 
component of temperature: t ha t is, do in both early and late 
times was found to be small, and in the intermediate times at-
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tained a maximum very near the time when the fluctuations were 
found to be most severe. Additionally, the fluctuating tempera
ture data from Figs. 1(a), 2(a), and 3(a) could be nondimen-
sionalized according to the grouping 

MO (2Z AT*l/s 

Zo\g ToTdo 

where v 2 Z / j i s the time for a particle of hot gas at the wall to 
travel under constant acceleration g to the sensor a distance Z 
from the wall. Hence, Fig. 4 was constructed and the above 
ordinate was plotted as a function of do/Bo max. 

Experimental Apparatus 

The apparatus consisted of a cylindrical vessel which dis
charged the two gases, nitrogen or helium, through an exit 
orifice at one end of the cylinder to the atmosphere. Two burst 
discs, located downstream of the orifice, acted as a rapidly open
ing valve to initiate the discharge. The cylindrical vessel, whose 
axis was perpendicular to the gravity field, was instrumented 
with two 0.001-in. copper-constantan thermocouples and a 
pressure gauge. One of the thermocouple junctions (Ti) was 
positioned within the cylinder at an axial position 1.575 in. from 
the orifice and the other (T2) at an axial position 2.515 in. from 
the orifice: the distance between the orifice and opposite end 
wall of the cylinder was 4.145 in. Further details on the design 
and construction of the apparatus are given in [7]. 

The effective orifice discharge area A\ appearing in equation 
(46) was obtained by the use of the early-time solutions given by 
equations (16) and (17) as substituted into equation (6). Equa
tion (6) was then integrated in early times, and the mass within 
we tank resulting from this calculation was set equal to the 
Mass remaining as a result of the equation of state using mea
sured pressure and mean temperature data. This procedure, 
Valid for times less than about 0.5frtEF, gave effective discharge 
exit areas which were substantially constant in these early times. 
*or times later than about 0.5teEF, the same effective orifice 
discharge area was used as was found in the early times, the basis 
'or this assumption being estimates from the results of Deckker 
and Chang [1]. 

Discussion of Results 
Mean Gas Temperature. Three different experimental runs were 

onsidered, and the results for each of these runs are shown in 
% s . 1(a), 1 ( 6 ) ( r u n 1 ) ; F i g g 2(a), 2(6) (run 2); and Figs. 3(a), 
^) (run 3). Nitrogen was discharged in runs 1 and 2; run 1 

*as for a pressure ratio PO/PATM = 72.4, while for run 2, PO/PATM 

= 368. In run 3, helium was discharged a t the pressure ratio 
PO/PATM = 72.4 to give an experimental range of conditions for 
<REF and also to give greater oscillations than in runs 1 and 2. 
The conditions for runs 1, 2, and 3 (shown in Figs. 1(a), 2(a), and 
3(a), respectively) assured a turbulent free-convective mechanism 
throughout the minimum of mean gas temperature, gZ3fi (AT/ 
v2) > 108. 

The predicted mean temperatures, the broken curves shown 
in Figs. 1(a), 2(a), and 3(a), were obtained using the values for 
c and n in equation (9) of 0.105 and 1/a , respectively. The 
experimental temperatures T\ and T% reproduced in Figs. 1(a), 
2(a), and 3(a) are shown for the two axial locations along the 
cylinder axis. Apparently there was a tendency for 7\ to read 
consistently higher than 2\ , evidently as a result of axial position 
with respect to the orifice location. Both the mean and fluctu
ating components of Tt and T% were found to be repeatable when 
any given run was repeated using the same initial conditions. 

The value of c = 0.105 was chosen so tha t the mean of the 
experimental history of 2 \ matched the predicted response, since 
7\, farther from the orifice than T\, was thought to best represent 
the bulk temperature of the gas. For runs 1 and 2, as shown in 
Figs. 1(a) and 2(a), there was good agreement between the pre
dicted and experimental mean temperatures at all times. For 
run 3, as shown in Fig. 3(a), the fluctuations in T\ were much 
larger than those observed for runs 1 and 2, and difficulty was 
experienced in interpreting a mean temperature response. 
However, it does appear that the predicted mean temperature 
response of Fig. 3(a) for helium underestimates the mean ex
perimental values. This could be a consequence of the large 
magnitude of the fluctuations interfering to such an extent that 
the experimental mean temperature rises above its predicted 
value. 

The unchoking of the flow must be accounted for to obtain 
the mean gas-temperature response in later times, as shown in 
Fig. 1(a). Equation (10) should not be used when t > lc. 

For the experimental data of runs 1, 2, and 3, the ratio of wall 
thermal capacitance to initial gas thermal capacitance, Mwca/ 
(rrusR), was equal to 356, 70, and 353, respectively. The wall 
temperature was found to be essentially constant under these 
conditions. I t was determined tha t the above parameter for 
the thermal-capacitance ratio had to be smaller than about 10 
to cause a 10 percent or more change in the wall temperature. 

An additional computation was performed to determine the 
accuracy of the approximate result given by equation (10). I t 
was found tha t pressure ratios PO/PATM greater than about 15 
gave mean gas temperatures within about 10 percent of the 
coupled (actual) solution. 

Fluctuating Gas Temperature. The temperature measurements 
for 7\ and Z'2 are shown on an enlarged scale in Figs. 1(6), 2(6), 
and 3(6) for runs 1, 2, and 3, respectively. Superimposed on 
these figures are the calculated thermal diffusional layer 0 from 
equation (20) and the Rayleigh number Raj . As shown, the 
growth of 0 in time is very rapid, and in Figs. 1(6) and 2(6) the 
fluctuations appear at the same time tha t 5 begins to grow rap
idly. However, in Fig. 3(6) (helium) the onset of fluctuations 
as directly read from the thermocouples appears to lag the 
rapid growth of 5. Upon further study of Fig. 3(6) it was noted 
that the abscissa £/£REF for helium had a different reference time 
than did the nitrogen data, Figs. 1(6) and 2(6), and therefore a 
cellular-type movement for the helium data of run 3 from the 
wall to the sensor, located a distance Z = 0.87 in. from the wall, 
would take a longer dimensionless time t/tnEF to reach the sensor 
than would the nitrogen data of runs 1 and 2. In fact, if the 
correction is made for the time lag of a particle to travel from 
the wall to the sensor under constant acceleration g, then the 
onset of fluctuations appears to correspond more closely with 
the rapid growth of S for the helium data of Fig. 3(6), see the 
dotted curves. (For the nitrogen data, the time-lag correction 
was found to be negligible.) At the point where oscillations 
are first discernible, the Rayleigh number Raa, which is based 
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upon 8, appears to be the same for all three runs, about 10s. 
Since the results of Figs. 1(b), 2(6), and 3(6) show a strong cor
respondence between the wall diffusion layer and the onset of 
fluctuations, the results of Townsend [6] appear to have validity 
even for transient heat transfer of the type discussed herein. 

In Fig. 4 the relative size of the fluctuations is plotted as a 
function of the scale of logarithmic temperature. The data are 
seen to fall nearly symmetrically about the line do/60 max = 1, 
giving substantiation to this mean correlating quantity. Since 
the dependence of 8g on mean gas temperature is 80 ~ [w»(0, r) — 
T]/T, and since d0 is independent of gas pressure, it may be con
cluded that during discharge the relative fluctuation size is 
governed primarily by the difference between wall and mean 
gas temperatures. The scaling parameter used for the ordinate 
of Fig. 4 appears to adequately group the fluctuation size for the 
data considered. 
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Heat Transfer and Forces on Concave 
Surfaces in a Free Molecular Flow 
A Monte Carlo modeling technique is described for mathematically simulating free 
molecular flows over a concave spherical surface and a concave cylindrical surface of 
finite length. The half-angle of the surfaces may vary from 0 to 90 deg, and the incident 
flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse 
reflection and imperfect energy accommodation for molecules colliding with the surfaces 
are also considered. Results of heat transfer, drag, and lift coefficients are presented 
for a variety of flow conditions. The present Monte Carlo results are shown to be in 
very good agreement with certain available theoretical solutions. 

Introduction 

A, ILTHOUGH THE subject of free molecule flow over 
simple convex bodies has been extensively investigated and rele
vant theories well developed, the problem of free molecule flow 
over concave bodies, such as a spherical surface or a cylindrical 
segment, is relatively unexplored. This is primarily due to the 
difficulties involved in analyzing the complicated multiple inter-
surface reflections for a concave flow. Previous studies pertain
ing to this subject were all based on the simplified assumptions 
that the flow is hyperthermal (thermal motion neglected) and 
that the molecule-surface interaction is perfectly diffuse [1-7]. l 

A notable exception is, however, the recently reported work of 
Stewart [S], in which the author made theoretical calculations of 
non-hyperthermal (arbitrary speed) flow along an infinitely long, 
diffusely reflecting, concave cylindrical surface. The condition 
of imperfect energy accommodation for the gas particles colliding 
with a surface was considered in most of the concave-flow studies, 
"tit the possible effects of molecular shielding are not treated 
except in two of the above-mentioned papers. Sparrow et al. [5] 
considered shielding effects in a study of hyperthermal flow over 
concave cylindrical surfaces of infinite length. Wimberly [7] 
wo made investigations of shielding effects for hyperthermal flow 
°ver a hemispherical cavity. 

This l^aper is concerned with the heat-transfer and aerody-
ri»mic-force characteristics on concave spherical and concave 
cylindrical surfaces in a free molecule flow. The usual limiting 
•Sumptions of hyperthermal flow and diffuse reflection have been 
'cnioved. The effects of molecular shielding are included in the 
""alysis. The length of the cylindrical surface is considered to be 
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Fig. 1 Schematic of flow over a concave spherical surface 

finite. The problems are solved by the application of a Monte 
Carlo simulation technique which was developed through a series 
of previous studies of various molecular flow problems [9-13]. 
The results of this s tudy have applications in such areas as the 
design of high-altitude air collectors and in analyzing space-
vehicle concave surfaces. 

Description of the Problems 
The two problems considered in this study are shown sche

matically in Pigs. 1 and 2. A highly rarefied gas flows steadily 
and uniformly with a mass velocity U and an angle of at tack 4>„ 
over a concave spherical or a concave cylindrical surface which has 
a radius of curvature r0 and a half-angle a>. The cylindrical sur
face has a length I, and the flow is considered to be normal to its 
axis. Both r/>„ and co may take on any value between 0 to 90 deg. 
The gas particles have a molecular mass m and a ratio of specific 
heats y. The free stream is maintained at a temperature Ta and 
a number density na. I t is assumed that n„ is sufficiently low 
that the effect of intermolecular collisions in the vicinity of the 
body is negligible and a free molecule flow analysis is valid. 

The temperature of the bodies is assumed to be kept at a con
stant value Tw. Maxwell's reflection coefficient <r and Knudsen's 
energy accommodation coefficient a are used to account for par
tial diffuse reflection and imperfect thermal accommodation for 
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Fig. 2 Schematic of flow over a concave cylindrical surface 

the molecules colliding with the surface. The extreme cases of 
totally diffuse reflection with perfect energy accommodation (tr 
= a = 1.0) and completely specular reflection without energy 
accommodation (<r = a — 0) are also considered. I t is assumed, 
as usual, that the probability distribution of the molecular 
velocities in the free stream is drifting Maxwellian. 

Monte Carlo Simulation Procedure 
To start the Monte Carlo simulation of molecular motion, it is 

necessary first to construct a control volume which completely 
encloses the body. The control volume constructed for the 
spherical surface is in the form of an imaginary cylinder as shown 
in Fig. 3. A rectangular parallelepiped control volume is chosen 
for the concave cylindrical body. The surfaces of the control 
volumes are used as the starting locations for the trajectories of 
sample molecules, which are mathematically simulated, one at a 
time, on a high-speed digital computer by means of random 
numbers. The selection of the control volume for a given prob
lem is very critical to the Monte Carlo simulation of the problem, 
An appropriate choice of the control volume would not only 
simplify the calculations but also minimize the computation time. 

SIDE SURFACE 

Fig. 3 The cylindrical control volume enclosing the concave sphorira| 
surface 

For the present selections, the surfaces of the control volunn .,,. 
either perpendicular or parallel to the free-stream velocity i l-.-i 
the calculations for the position and velocity of the starting s •un|,!.. 
molecules are greatly simplified. 

Consider first the flow over the concave spherical surfai i\ \ 
body-centered cartesian coordinate system xix&s and threi' !••• i 
coordinate systems Xix%x%', rdz, and x\"x%"x-i" are defined in I",-.'.; 
for later calculation purposes. The body-centered coord.n.<h< 
have their origin located at the center of curvature of the sph ri. •,! 
body. The origin of Xi 'x%'x-i' axes coincides with the center • -i. |... 
front surface of the control volume. The cylindrical cooi-iii .:i. 
system rdz is an alternate system for Xi'xi'xa' (z axis coincide- -.'.ii!. 
xa' axis). The site of a molecule-surface collision will be -I,'-.., 
as the origin of xi"x/x3" coordinates. The xs" axis will alw . - i 
an outer normal of the spherical surface. The X\" axis v. 
perpendicular to the Xi axis and will always make an acute 
with the Xi axis. These coordinate systems are all right-ha 

The Monte Carlo calculations of the problem begin n> 
simulating a molecule (by calculating its trajectory and vel'"T;. 
as it enters the control volume by means of uniformly distril 'i-.i 
random numbers. The random numbers are generated by .> • " 
gruential multiplicative random number generator [] I 

Hi i • 

•• ! . * : • • 

, . | r , | 

• • • • . ! , - . 

•Nomenclature-
A = projected area of body, A = 

7rr0
2 sin2 co for the concave 

spherical surface, A = 2r0l 
sin u for the concave cylin
drical surface 

ctj = cosine of the angle between Xi'-
and zy-axes; i = 1, 2, 3 and 
3 = 1, 2, 3 

CD = drag coefficient defined by 
equation (13) 

CL = lift coefficient defined by equa
tion (14) 

CQ ~ heat transfer coefficient defined 
by equation (12) 

Ei — kinetic energy of an incident 
molecule 

ET = energy of a molecule reflected 
from the body 

Ew = energy of a molecule if it is in 
thermal equilibrium with the 
body 

/ = velocity distribution function 
of the molecules crossing a 
surface 

fr,fo,fz = marginal velocity distribution 
functions with respect to a 
set of cylindrical coordinates 
rdz 
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Fn 
FL 

k 
I 

m 
M; 

n„ 
no 

N 

If 

Q 

To 

Ri 

S 

— total drag force 
= total lift force 
= Boltzmann constant 
= length of the concave cylindri

cal surface 
= mass of a molecule 
= momentum of an incident 

molecule 
= number density in free stream 
= sample number density in free 

stream 
= sample size or total number of 

molecules generated on the 
surfaces of a control volume 

= sample flux generated at the 
front surface of a control 
volume 

= total amount of heat trans
ferred to a body per unit 
time 

= radius of curvature of the con
cave bodies 

= i th uniformly distributed pseu
do-random number in the 
interval of 0 and l;i— 1,2, 
. . . , 2 3 3 

= speed ratio, S = U/vm 

T, 

Tw 

T„ 

Mi 

u 
V 

Vm 

Vd 

Vi 

a 

J 
a 

<£„ 
CO 

r.' 

temperature of a moleculi 
fleeted from wall 

temperature of body 
temperature of gas ir 

stream 
direction cosines of V<i w'u 

spect to .T.IX2£3 axes; i = ' 
mass velocity of gas h' 

stream 
thermal velocity of a mcn-'ii. 
most probable thermal -[••'' 

of a molecule in free s'---',w 

vm = (ZkTjmft* 
velocity of a diffusely reii'-'!i • 

molecule 
resultant or incident vl'-''1"' 

of a molecule 
energy accommodation '"" 

ficient, 0 < a < 1.0 
ratio of specific heats of,-' " 
Maxwell's reflection coel. , , |f' 

or tangential momentum '• 
commodation coeffici|,iL'' 
< o - < 1 . 0 

angle of attack, 0 < <j>a '••• ' " 
half-angle of the ccm"'-' 

bodies, 0 < co < x / 2 
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follows: 

Ni+i = 57iVi (mod 236) 

Ri+1 = 2"3Wi+ i 

0, 1, 2, . (la) 

(16) 

where No is an initial random number which could be any odd in
teger. The Ri, R2, Rz, etc. are uniformly distributed pseudo-
vand°m numbers in the interval of 0 and 1 with a period 233. 

For a sample molecule simulated at the front surface of the 
control volume (see Pig. 3), the position of the molecule with re
spect to the Xi'x-i'xz' axes is calculated in terms of random num
bers, such that its positional distribution will be completely uni
form. 

Next, a thermal velocity vector for the sample molecule is 
randomly selected according to the assumed JVIaxwellian velocity 
distribution of the molecules crossing the surface. The relation
ships of the thermal velocity components in cylindrical coordi
nates (vr, 8, vz) and the random numbers can be derived using 
random-variable theory as follows: 

exp 

vr/vm = [In (I/A,)]1/* 

6 = 2irR2 

(-%7«™2) + Tr'ASfl - erf («,/!>„)] }/xOS) Rz 

(2a) 

(26) 

(2c) 

where vm is the most probable thermal speed of the molecules in 
the free stream and the function xOS) is defined by 

X(S) = exp (-S2) + TT'AS(1 + erf S) (2d) 

A brief derivation of these equations is given'in the Appendix of 
reference [17]. Note that vz is only implicitly related to the 
random number R3 by equation (2c). An explicit relationship 
can, however, be developed for any S of interest by a least-squares 
curve fitting of a polynomial in terms of R3- For example, a 
seventh-degree polynomial fit for S = 5.0 is 

hhm = -3.16689 + 8.04001?? - 12.39235??2 + 11.70761)?3 

- 1.16134?j4 - 6.01112^ + 4.20561??6 - 0.88090??7 (3) 

where ij = [In (l/Rz)]1/l. 
After the thermal velocity of the molecule is computed, it is 

added vectorially to the mass velocity U to give the resultant 
velocity Vs. 

The total kinetic energy and momentum of this molecule may 
now be calculated as [15] 

and 

\ 5 _ 3/y 

Mi = mV; 

(4) 

(5) 

The last term in equation (4) represents the vibrational and rota
tional modes ol energy for polyatomic gases. 

At this time, a determination is made as to whether this 
Molecule will hit or miss the body. In the latter case, a new 
Molecule is simulated on either the front, back, or side surface 
™ the control volume. The number of molecules simulated on 
ea™ surface of the control volume is made proportional to the 
Molecular flux through tha t surface. The procedures of simula-
"0n of a sample molecule on the back surface are the same as 
'hose described above, except that the flow is away from the 
Efface, and consequently a negative S value should be used. For 
'Molecule simulated on the side surface of the control volume, its 
Positional distribution is again taken to be uniform. 

Ihe equations for calculating the magnitude and polar angles 
a sample molecule as it crosses the side surface of the control 

v°lume may be derived as [16] 

v/vm = {In ^/(Ri-R,)]}1/'-

<f>' = sin"1 (R6
l/-) 

6' = 2TR7 

(6a) 

(66) 

(6c) 
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where <f>' and 6' represent the colatitude and longitude with respect 
to an inner normal and a tangent line drawn at the point at which 
the molecule is simulated. The resultant velocity of the molecule 
is again the vectorial sum of v and U. Both energy and momen
tum of this molecule are calculated as above. 

When a molecule hits either the concave or the convex side of 
the body, the site of collision is first determined and the coordi
nates xi"xi"x/ established (see Fig. 3), and then the molecule is 
assumed to be reflected or reemitted according to Maxwell's 
surface-collision model. That is, a fraction IT of all the molecule-
surface collisions is reflected diffusely according to Lambert 's 
cosine law, while the remainder is reflected specularly. 

A specular reflection causes no change in the components of 
velocity which are tangential to the body surface, and the normal 
component is reversed in direction but unchanged in magnitude. 
There is no energy or tangential momentum (shear force) transfer 
for this type of collision. The normal momentum transfer (pres
sure force) is equal to twice the incident normal momentum. 

The velocity distribution of the diffusely reemitted molecules 
is assumed to be Maxwellian at a temperature Tr which depends 
on the wall temperature Tw and the energy accommodation coef
ficient a. 

The magnitude of velocity Vd of the diffusely reemitted mole
cules can be calculated by [10,12] 

Vd 
/2kT, 

\ m "') ̂  (In i i ) 7 

with 

Tr 
2( T 

1 \ a J k a 

(7) 

(7a) 
T + 

I t is emphasized that the quantities a and a are treated as overall 
phenomenological averages and are considered to be known a 
priori. 

The direction cosines of Vd with respect to xi"x-i"xz" axes may 
be calculated by 

uld" = Ri0
1/2 cos (27r.Sn) (8a) 

uu" = i?io' /2sin (27T.Ru) (86) 

uu" = ± ( 1 - flio)'A (8c) 

where, in the last equation, a positive value is taken for a convex-
side collision and a negative value for concave-side collision. 

The direction cosines of Vd with respect to xiXzXz axes may be 
obtained through the following coordinate transformation: 

Uid = CjMjd" (hj = 1, 2, 3) (9) 

where a,; is the cosine of the angle between the positive x/ and xt 
axes. The nine components of the direction cosine matrix [cy] 
were derived in reference [12]. 

At this time, the energy and momentum transfer to the body 
due to this collision are computed and recorded as 

AQ = Ei - Er 

AM = Mi - mVd 

(10) 

(11) 

where m is again the mass of a molecule. 
If the collision occurs on the convex side of the body, the re

flected molecule will be lost in space, and the simulation of a new 
molecule is in order. But if the collision occurs on the concave 
side of the body, further intersurface collisions are possible. The 
trajectory of the diffusely or specularly reflected molecule is con
tinually traced, and momenta and energy exchanges for further 
collisions are again computed and recorded, until the molecule 
finally moves out of the control volume. After that , a new 
molecule is again simulated on one of the surfaces of the control 
volume, and the calculation is repeated. 

The Monte Carlo calculation procedure used for the flow over 
the concave cylindrical surface is the same as that described 
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Fig. 4 Heal transfer coefficient vs. half-angle for a concave spherical 
surface for different values of energy accommodation coefficient 
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Fig. 5 Heat transfer coefficient vs. speed ratio for different values of 
wall-to-gas temperature ratio 

above, the only difference being the geometry of the body and the 
shape of the control volume. This brings up an important point; 
namely, a Monte Carlo method can be applied to problems with 
more complex geometries without undue difficulties. 

The Monte Carlo calculation of a molecular flow problem is 
completed when a sufficiently large number of molecules is 
sampled and when the energy and momentum exchanges for all 
collisions are tallied. The statistical results of heat transfer rate, 
drag force, and lift force may be calculated in terms of heat trans
fer, drag, and lift coefficients which are defined, respectively, as 
follows: 

Ca = 
Q/A 

(L/2)n0mUs (12) 

12.0 

10,0 

8.0 

: D 

6.0 

4,0 

2,0 

- O - O PRESENT MONTE CARLO DATA 
THEORETICAL HYPERTHERMAL 
SOLUTION (PRATT) 

20 

Fig. 6 Drag coefficient for a concave hemisphere vs. speed ratio for 
different values of wall-to-gas temperature ratio 

CD = 

CL = 

FD/A 

(l/2)n<,mU2 

FL/A 

(l/2)n0mU* 

(13) 

(H) 

In the above equations, A is the projected area of body (A = 
7rroa sin2 w for the concave spherical surface, A = 2r0l sin to for the 
concave cylindrical surface), Q is the total rate of heat transiVi:-.. i 
to a body on both sides, and FD and FL are the drag and lift \<\ '•••. 
(momentum rates) acting respectively in the direction of and ii":-
mal to the mass velocity U. The quanti ty no appearing in iln-
denominator of the above equations is the sample number diT~ll. 
in the free stream, which may be calculated from the sample iln-
q/, at the front surface of the control volume as 

where the function x(»S) was defined by equation (2d). 

Table ] Monte Carlo calculated CQ for a concave spherical surface and 
a long concave cylindrical surface compared with other analytical solu
tions; S = 2 0 . 0 , 0 „ = 0 deg, Tw/T„ = 2 0 . 0 , a = 1.0, y = 1.67, N •• 
10 ,000 

a 

0. 1 

0 .5 

•1.0 

u 
(deg) 

0 
15 
30 
45 
60 
75 
90 

0 
15 
30 
45 
60 
75 
90 

" "o 
15 
30 
45 
60 
75 
90 

Chahine's Analytical 
Hyperthermal 

Solution 
Spherical 

Surface 

0.090 
0.091 
0.095 
0.105 
0.120 
0.146 
0.178 
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pig, 7 Heat transfer coefficient vs. half-angle for a long concave 
cylindrical surface for different values of energy accommodation coef-
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Discussion of Results 
Two separate Monte Carlo computer programs were developed. 

A large amount of data was obtained for many possible combina
tions of the flow parameters y, 8, 4>m to, Tw/Tm a, IT, and l/r0. 
The calculations were carried out on an IBM 7094 digital com
puter using a sample size of 10,000 to 20,000 molecules. The 
computation time required for each flow case is approximately 1 
to 2 min. Probable errors for the statistical results are estimated 
(by comparing various Monte Carlo data with known exact solu
tions) to be less than 3 percent. 

Some typical results of heat transfer, drag, and lift coefficients 
are presented in Tables 1, 2, and 3, and in Figs. 4-8. Table 1 
shows the Monte Carlo calculated results of heat transfer coef
ficient CQ for both concave spherical and cylindrical surfaces for 
a near-hyperthermal flow (S = 20.0) compared with analytical 
hyperthermal solutions obtained by Chahine [2] and Schamberg 
[6]. In Table 2, the Monte Carlo data of CQ, CD, and Cz, are 
tabulated for various values of speed ratio S. Since 4>a> = 0, CL 
should be equal to zero. The data of CL are shown in Table 2 to 
be close to zero. The minor variation from zero merely reflects 
the random fluctuation. The data tabulated in Table 3 show the 
effects of molecule sample size on the accuracy of the Monte 
Carlo calculated results. 

The results of CQ for a concave spherical surface tabulated in 
Table 1 are also plotted in Pig. 4. Good agreement is observed 
between the present Monte Carlo data and the analytical solu-

loble 2 Monte Carlo calculated CQ, CJJ, and Cr, for a concave hemisphere 
qi,d a finite-length concave cylindrical half -surface; y — 1.67, 0OT = 0 
( | S,« = 9 0 deg, a = 1.0, a = ^.0,Tw/Ta> = 0 .25 , N = 10 ,000 
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Fig. 8 Drag coefficient vs. speed ratio for a long concave cylindrical 
surface for different values of angle of attack 

tions from other sources, except tha t Chahine's results are seen to 
be somewhat too high for the cases of large concavity (to > 60 
deg). This discrepancy is perhaps due to minor errors intro
duced in Chahine's formulation of his momentum and energy 
balance equations (see Pra t t [3], Sparrow et al. [5], and 
Schamberg [6]). The Monte Carlo results of CQ for concave 
surfaces with a = l.Q are also shown to be in excellent agreement 
with corresponding theoretical convex-body solutions by Oppen-
heim [15]. This is because for concave surfaces with a = 1.0 
and a uniform wall temperature, multiple collisions have no effect 
on heat transfer; and, for a convex surface, multiple collisions are 
not possible (see also Fan [11]). 

In Pig. 5, CQ for a concave hemisphere is plotted as a function 
of S for two different values of T„/Tm. The dotted and center-
lined curves were calculated from references [6, 15] (using their 
equations 21 and 2.15, respectively). As expected, the Monte 
Carlo results for a concave hemisphere lie very close to Oppen-
heim's theoretical convex-hemisphere solutions for nearly all 
values of S (since a — 1.0). I t is also expected tha t Scham-
berg's hyperthermal solutions agree with the Monte Carlo results 
only at large speed ratios, but not for small ones. 

The results of CD for a concave hemisphere are shown plotted 
in Fig. 6 as a function of speed ratio for two different values of 

Table 3 Effects of sample size on the accuracy of Monte Carlo calculated 
results; S = 2 0 . 0 , <j>m = 0 deg, T^/T^ = 20 .0 , w = 90 deg, a = l.O, 
<r = 1 . 0 , 7 = ' - 6 7 
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wall-to-gas temperature ratio. The dotted curves are Prat t ' s 
theoretical hyperthermal solutions. I t is observed that at large 
speed ratios, the Monte Carlo calculated results nearly coincide 
with the hyperthermal solution. As one would expect, however, 
this agreement begins to deteriorate at the lower speed ratios. 

The results of CQ for a long concave cylindrical surface (l/r0 

= 20) in a near-hyperthermal stream (S = 20) are given in Fig. 7, 
along with various analytical solutions from other sources. 
Similar observations can be noted as those given for Pig. 4. 

Fig. 8 shows the results of drag coefficient for a long concave 
cylindrical surface as a function of speed ratio for different angles 
of attack. The dotted curve in Fig. 8 was reproduced from 
Stewart's paper [8] • Excellent agreement is again observed be
tween the present Monte Carlo results and the theoretical solu
tions. Other results of CQ, CD, and CL for various flow conditions 
are available. 

Conclusions 
A Monte Carlo modeling technique is developed and applied 

to the calculation of free molecule flow over concave spherical 
and cylindrical surfaces. The results indicate the following: 
(1) A relatively large number of flow and physical parameters 
can be analyzed using the present Monte Carlo calculation 
scheme; (2) solutions having a high degree of accuracy (error less 
than 3 percent) can be obtained utilizing a moderate sample size 
(10,000 to 20,000 molecules); and (3) computation time is not 
excessive (1 to 2 min on an IBM 7094 computer). 
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Application of a Heat-Transfer Model to 
Determine Regional Blood Flow Rate 
The temporal patterns of central and skin temperature may provide important pre
dictive and diagnostic information during the recovery period from major surgery. Ex
perimentally it is found that large changes in toe temperature occur at a predictable 
time, early in the postoperative period. These changes reflect cardiovascular dynamics 
and are related to modern concepts of thermoregulation. In order to explore the con
tribution of time-varying blood flow to heat transfer, a heat-transfer model was applied 
to the great toe. This model allowed prediction of toe blood flow rate from measurements 
of the central and skin temperatures. Experimental verification of the analytically 
determined blood flow rates was made using a modified technique of venous occlusion 
plethysmography. 

Introduction 

L HE CLINICIAN has long utilized skin temperature as 
a qualitative measure of blood flow. Correspondingly, research 
workers have developed energy balances in which the tempera
ture gradient of the skin is proportional to blood flow [1-3].1 

Such models are not rigorous and yet provide reasonable results, 
given the uncertainties of anatomy and thermal properties and 
errors in skin temperature measurement [4]. Regional and 
whole-body thermal models have been developed. I t has been 
possible to include many details of physiological heat transfer in 
the more sophisticated of these models [5], but as yet there has 
been no solution which adequately characterizes the regulation of 
eonvective heat flux in the cardiovascular system [6]. 

Recently the skin temperature of the great toe was applied to 
predict the entire cardiac output for the clinically significant 
problem of shock [7]. Moreover the toe measurement was ajso. 
shown on statistical grounds to predict with some accuracy the 
recovery from shock. These results have provoked interest 
which leads to a more detailed analysis of the relation between 
hlood flow and skin temperature. 

Large and sudden changes in skin temperature occur at times 
°f clinical significance, and recent advances in understanding of 
We thermoregulatory control system [8] may allow the rational 
interpretation of these changes. According to modern concepts 
°t thermoregulation, a diffuse network of peripheral cold receptors 
and a concentrated warm receptor pool, in the anterior region of 
we hypothalamus, provide the sensory basis for thermal control. 

Numbers in brackets designate References at end of paper. 
•vPontributed by the Heat Transfer Division and presented at the 
glutei-Annual Meeting, Washington, D. C , November 28-Deoember 
'1971, of T H E AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Manuscript received by the Heat Transfer Division August 11, 1971; 
^ised manuscript received March 22, 1972. Paper No. 71-WA/HT-

Via as yet unspecified pathways these signals reach a thermo
regulatory control center located in the posterior hypothalamus. 
Comparison with a temperature set point is made at tha t site and 
signals are developed through multiple pathways which lead to 
heat production or heat loss by a number of mechanisms (shiver
ing, vasoconstriction, sweating, .vasodilation, behavioral re
sponses). 

In the case of rewarming following open-heart surgery, body 
heat is conserved during the first postoperative hours by vaso
constriction in response to low hypothalamic and skin tempera
tures. Metabolic heat production and shutdown of skin heat-
rejection mechanisms provide for increasing central temperature 
until the set point is reached. At that time a strong vasodilation 
takes place, warm blood flows to the hands and feet, and skin 
temperature rises significantly (3 to 10 deg C). Absence of this 
response suggests one or more of the following problems: aberra
tion of the thermal homeostatic control function, peripheral 
vascular disease, or weak heart function. A strong correlation 
exists between absence of the response and morbidity and mor
tality. A study of 140 patients showed absence of the normal 
thermal response in 47 cases: 18 of these 47 patients ultimately 
died and 12 others developed severe early postoperative complica
tions [9]. Only five of the cases with normal thermal response 
died; these occurred, with one exception, due to arrythmia two 
weeks or later postoperatively. 

A more intensive study of postoperative hemodynamics was 
undertaken in order to explore the basis of these results, This 
study provided an opportunity to apply a detailed heat-transfer 
model to the indirect computation of regional blood flow, in the 
context of the general postoperative course of cardiac-surgery 
patients. 

In the following, two typical cases (I and I I ) with few post
operative complications will be presented and discussed in gen
eral, and with particular reference to the central- and skin-
temperature responses. A case involving significant postopera
tive complication ( I I I ) will also be presented and discussed. The 
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heat-transfer model will be applied to predict toe blood flow, and 
the results will be compared to those from the venous-occlusion 
plethysmography technique. 

Methods and Materials 
Patients who have undergone open-heart surgery at Pacific 

Medical Center are monitored through the early recovery period 
by a computer-based system developed by IBM Corp. in con
junction with the Institute of Medical Sciences. This system has 
been described in detail [10] and provides measurements every 10 
min of the hemodynamic, respiratory, and thermal parameters 
listed in Table 1. Semiautomatic measurements were also per
formed, every hour or at more frequent intervals, of arteriovenous 
oxygen-content difference, cardiac output by Fick technique or 
dye-dilution technique [11]. Parenteral fluid administration, 
blood loss, and urine output were recorded every half hour, and 
drugs were recorded as administered. The patients were supine 
throughout the period of observation, which generally lasted 
through the first six to 12 postoperative hours. Preoperative 
diagnosis and the findings at cardiac catheterization were in
cluded in the record. 

Thermistor thermometers (Yellow Springs Instruments) were 
attached to the pads of both great toes by sections of perforated 
tape. These and a rectal thermistor probe were interfaced with 
the patient monitoring system. Ambient temperature was 
measured at half-hour intervals. 

Water-bath calibrations were performed for 14 skin thermistors 
against an ASTM 49C thermometer in the 27 to 40 deg C range. 
The reference thermometer had been calibrated against melting-
point solutions. The calibration curves were linear. The range 
of slopes was 0.94 to 1.02 (a = 0.011), with offsets at 30 deg C 
varying from 0 to 1.10 deg C (cr = 0.59 deg C). These thermis
tors were utilized at random from day to day. The YSI skin 
thermistors leave much to be desired in terms of size (0.63 cm 
diameter, 0.25 cm thick) and thermal inertia. They were found, 
however, to be robust, and the mode of attachment was practical 
in view of the exigencies of the recovery^-room situation. 

In addition to the toe and rectal temperatures, tympanic-
membrane temperatures were obtained with a Radiation Systems, 
Inc. model A 3591-01 tympanic thermometer. Tympanic-
membrane temperatures were obtained at 20-min intervals during 
the course of the experiment and recorded manually. This was 
accomplished by inserting the probe in the external acoustic 
meatus and gently bringing the probe to rest on the tympanum. 
The probe was removed following each measurement. 

Blood flow rates in the great toe were measured by a modifica
tion of Whitney's method of venous-occlusion plethysmography 
[12]. The technique assumes the venous return from the toe 
may be occluded, without affecting inflow, such that rate of 
change of circumference of the toe is proportional to flow at the 

instant of occlusion. The many details of technique and analy$js 

are discussed in a series of papers in the physiological literature 
[13]. 

Analytical Model 
In order to more fully understand the circulatory mechanises 

which have been previously discussed, the bio heat equation M>HS 

used to model the heat-transfer process in the great toe. This 
analytical expression, which has been successfully used in prior 

biological heat-transfer studies, is based on the fact that the heat-
transfer mechanism in tissue must not only account for conduc
tion but also heat addition or removal by blood supply and meta-
bolic heat-generation. Thus for cylindrical coordinates and 
constant properties 

pc 
6T 

r dr \ dr J 
+ m„cb{Tb - T) + S„. (1) 

where S,„ is the contribution from metabolic heat-generation and 
the quantity mbCb(Tb — T) represents the heat exchange between 
the blood and tissue. Both the physical and analytical implica
tions of the terms in equation (1) have received prior attention 
[14]. Also, in applying the relation to the great toe, two assump-

Table 1 Physiologic parameters monitored by the IBM Institute of 
Medical Science patient monitoring system 

Hemodynamic parameters 

Arterial pressure: systolic, diastolic, mean 
Left atrial pressure: mean 
Central venous pressure: mean 
Pulse rate: from pressure 
Heart rate: from E K G 
Cardiac output: Fick and dye-dilution techniques 

Respiratory parameters 

Respiratory rate 
Tidal volume and minute volume 
Lung compliance 
Work of inspiration 
Frictional airway resistance 
Oxygen consumption 
Carbon dioxide production 
Inspired oxygen concentration 
End-expired oxygen and carbon dioxide concentrations 

Thermal parameters 

Rectal and skin [2] temperatures 

Blood gas, urine, clinical chemistry data, plus nurse's notes are 
entered into the record via a bedside interactive terminal 

'Nomenclature-

a = parabolic profile parameter, deg 
C/cm2 

c = medium heat capacity, cal/gm-
degC 

a = heat capacity of blood, cal/gm-
degC 

rhb = blood flow rate, ml/cm3-sec 
k = medium thermal conductivity, 

cal/cm-sec-deg C 
K = gage calibration constant, cm/ 

mv 
O = grid baseline (circumference), 

cm 
AE = voltage change of plethysmo

graphy v 
t = time, sec 
r = radial coordinate, cm 

r0 = radius for assumed cylindrical h, h = 
toe geometry, cm 

R — nondimensional radius (r/r0) Jo, Ji = 
Sm = metabolic heat generation, cal/ um = 

cm3 

T 
To 

r> 
Tb 

To 
V 

v„ 
h 

H 

= 
= 
= 
= 

= 
= 
= 
= 

= 

temperature, deg C 
temperature at r = 0, deg C 
ambient temperature, deg C 
blood inlet temperature to toe, 

d e g C 
Tb + Sm/ihbCb, deg C 
T - Ti, deg C 
Tb - Ti + S,n/mbCb, deg C 
nondimensional heat-transfer 

coefficient (Hr0/k) 
surface heat-transfer coefficient, 

cal/see-cm2-deg G 

a 

& 
P 

MAP 
CVP 

CO 
T P R 

H R 
P R 

OUP 

modified Bessel function of the 
first kind 

Bessel function of the first kind 
eigenvalues of umJ\{um.) 

Wo(wm) = 0 
thermal diffusivity, cm!/soc 
blood flow parameter (riufiiirifl*) 
medium density, gm/cm 3 

mean arterial pressure, mm Hg 
central venous pressure, cm IW 
cardiac output, 1/min 
total peripheral resistance, 

dyne-sec/cm6 

heart rate from EKG, 1/sec 
pulse rate from pressure ouWe> 

1/sec 
oxygen consumption, ml/mm 
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tions must be noted. First, the heat-transfer process through 
the toe is assumed to be in the radial direction, which implies 
the model of an infinite cylinder. Experimental evidence of the 
irailai'ity °f temperature responses of thermistors placed near 

the ventrum and the tip of a great toe during a patient 's rewarm-
inK taply t n a ^ ^his is reasonable. Second, the perfusion mb is 
ngsiimed to be uniform over the cross section of the toe. 

Equation (1) can be cast into a more convenient analytical 
form by introducing the following quantities: 

To = Tb + S„,/mbcb 

R = r/n 

V = T ~ Tt 

V0 = Tb - Ti + Sm/mbcb 

i that 

dR* 

1 dV 

R dR 

dV 

dt 
- PV -QVo (2) 

where ft = mbW^/k and can be considered as a blood flow 
parameter. Equation (2) is solved by standard methods for sym
metry of the temperature profile at the center line (dV/dR = 0 
at R = 0) and convective heat transfer from the surface of the 
toe; that is, 

at R 
dR 

= -hV where h = Hn/k 

The solution is 

V = Vo 1 -
hloiVpR) 

vptiVp) + M„(V/3)_ 

~mv°^j^Tpw+^ik;) (3) 

!(„ is given by umJi(um) — hJo{u„) = 0. 
The solution of equation (3) is valid at all R, but the surface 

temperature is of principal interest in this case. I t can be ob
tained by evaluating equation (3) where h, Vo, and /3 are invariant 
with time. Knowing the values of the heat-transfer coefficient 
at the surface of the toe and the tempei'ature of the incoming 
Hood Tb, agreement between the analytical and experimental 
surface temperatures will result when the proper value of mb is 
selected. However, as will be further elaborated, treating- mb as 
a step function with time will yield surface temperature profiles 
which are not in agreement with experimental observations. 
Equation (3) can be extended for variable blood flow rate by 
employing an iterative procedure. Specifically, a test value of 
Ik is chosen and held constant over a time interval, typically 500 
sec for the range of experimental variables being considered. The 
criterion on rhb is tha t computed surface temperature be within 
0.1 deg C of measured temperature. At each interval a new ap
proximate initial condition which is a parabolic form of the tem
perature profile, namely V = Tc — ar2, is generated and used as 
the initial condition for the particular time interval. The parab
ola is an excellent fit to the computed temperature distribution. 
With this modification equation (3) becomes 

V, 1 -
MoWfiR) 

Vj3h(Vl3) + hhWp). 

+ ~^2 AmJ<s{umR)e' 
m= 1 

-(a/n2)(u„S + fl)t 

where 

+ CVP 
(cmH20) 

X x x xxjfx x 

- l — I — I — I — I — I — I I — I 1 — I — t — I 

T—i—i i i r 

Urine 
Vol. 
(ml) 

i i i r 
(Time Hours) 

Morphine 

Prolamine 

Co Cl2 

Digoxin 

Bretyiium 

Mannilol 

Tylenol 

1 
1 
1 

1 U 
1 
i 

i 

1 1 A J 

Fig. 1 Summary of clinically measured variables, case I 

A - 2hTc(u,J + /S) - 2/tFo/J - 2a/i(l - 4/um*)(um* + 

Case Studies 
Case Study I. Figure i presents a general record of the first f 2 

postoperative hours of a mitral-valve-replacement patient. The 
mean arterial pressure (MAP) was typical for this type of patient, 
showing an initially high value which declined and stabilized in 
the first four postoperative hours. Atrial fibrillation was ob
served at the second postoperative hour (A) by the decrement 
between heart rate (HR) and pulse rate (PR), and was treated 
with Digoxin. An initial blood loss was corrected by administra
tion of Protamine and infusion of blood. The bleed and arryth-
mia caused an initially low cardiac output (CO) below the pre
operative value. Total peripheral resistance (TPR), defined as 
systemic pressure drop divided by cardiac output, declined at a 
steady rate, modified only by the transient vasoconstrictive effect 
of Bretyiium (B). Urine output was on the low side of normal, 
although improved by administration of Mannitol. Blood gases 
and respiratory data were normal. 

Turning to the temperature data, normal steady increases in 
rectal and tympanic-membrane temperatures were observed in 
the first hours, accompanied by a normal slight decline in toe 
skin temperature. Tympanic-membrane temperatures sta-

(4) bilized at the third postoperative hour, in conjunction with a 
strong increase in toe temperature. This rewarming pat tern is 
typical in all features for patients with uneventful recoveries. 

i - 4a(«„,2 + /?) 

{uj + /3)(/i2 + u,J)J0(um) 

the infinite series has a rapid rate of convergence so that only The toe pat tern may not be called a normal response, however, as 
we or six terms are required to yield a value of temperature there were several drugs with cardiovascular activity given in 
Whin 10"7. the hour preceding the onset of the toe rewarming. Following the 
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160 

1 1 

Fig. 2 Summary of clinically measured variables, case II 

initial rise the course of the toe temperature was affected by 
Tylenol, fluid balance, and ambient conditions. The post
operative course of this patient was uneventful following this 
initial period. 

Case Study II. A second mitral-valve-replacement case is pre
sented in Fig. 2. A strong pulse pressure (PP defined as systolic-
diastolic), stable heart rate, and stable central venous pressure 
(CVP) characterize the first postoperative hours. An initially 
low cardiac output responds to the vasodilational effect of Thor
azine at the first postoperative hour; thereafter it was stable, 
equal to the preoperative value at cardiac catheterization. 
Bleeding rate was low and urine output initially high, becoming 
normal later in recovery. Oxygen consumption was initially low, 
but rose steadily in the first hours. There was no evidence from 
blood gas data of impaired lung function. The low oxygen con
sumption correlates with an initially low rectal temperature. 
Rectal temperature did not begin to rise until the patient was 
covered (except his feet) with warmed blankets (A). Despite 
the initial low core temperature, the patient was awake and alert 
and did not exhibit visible shivering. Toe temperature rose 
initially due to the legs being covered with warm blankets, but 
then exhibited a characteristic decline in conjunction with rising 
rectal temperature. The patient did not reach a steady tym
panic-membrane temperature until the tenth postoperative 
hour. The rise in toe temperature was strong, but slightly de
layed. Recovery of this patient was good, despite the strong 
initial hypothermia. 

Case Study III. This patient (see Fig. 3) exhibited symptoms of 
diabetes and periphei'al vascular disease preoperatively, and was 
operated for coronary artery disease, receiving two aorto-
coronary grafts. Postoperatively the mean arterial pressure 
was elevated and the patient appeared pale and vasoconstricted. 
Lidocaine was used to treat postoperative atrial fibrillation (which 
is evidenced by the heart-rate/pulse-rate decrement). This ap
peared to be unsuccessful, and Digitalis therapy, which had been 
initiated during surgery, was reinstituted in the fourth post
operative hour. A moderate bleed, primarily from the left chest 
drain, was balanced by blood administration. Urine output 
increased in response to apparent renal vasodilation with adminis
tration of Thorazine, but then declined to low-normal rate. 
Cardiac output was low initially and increased slowly as the 
physician sought to correct arrythmia, bleeding, and vasocon
striction. Total peripheral resistance was initially high (A) and 
responded to the vasodilational action of Thorazine, but sta-

~i—i—i—i—i—i—i—i—i—i—i—r 

co s l ^A 0 o 
(L/mini \ ' o o o 
+ Dye ^ + • 
O Pick A • 

T i m e ( H o u r s ) 

L i d o c a i n e jL 

T h o r a z i n e 11 1 

Digoxin 1 

Fig. 3 Summary of clinically measured variables, case III 

bilized at a still elevated level. Oxygen consumption (('l'1 ': 
was normal, but this was accomplished at the expense of a !:•:;• 
A-V difference of blood oxygen content, and in the face of m ••-
efficient alveolar ventilation. 

Rectal temperature was quite low initially but inert i-i>: 
steadily, lagging tympanic-membrane temperature; appiuV-
mately one hour. Toe temperature rose in response to v..\ii:i 
blankets covering the legs (not the feet). The tympanic-
membrane temperature stabilized midway in the fifth hour and a 
weak response was seen in both toes. At the beginning of the 
seventh hour, a 1 deg C step in toe temperature took place, in 
synchrony with increased oxygen consumption, cardiac output, 
urine output, and increased mean arterial pressure. No single 
therapeutic measure correlates with the sudden improvement. A 
combination of improved circulating volume and cumulati 
fects of Digoxin might explain these changes in status. I 
event, the improvement was transitory. Vaso const rictioi 
countered again with Thorazine, which caused a decrer 
central venous pressure but also a drop in toe temperature, 
patient was seen through a difficult early recovery perioc 
suffered cardiac arrest on the sixth postoperative day, de-
in status, and died five days later. 

Results 
Parametric-Model Evaluation. Equation (3) was evaluated 

range of /3 in order to obtain the response of the surface ten" 
ture to variations in the blood flow. The blood flow rate is ti 
as a step function at time zero. The effects are shown in Fig 
typical values of blood inlet temperature (To — 37), heat-tri 
coefficient (H = 1.355 X 10 - 4 cal/sec-cm2-deg C), and geon 
I t is important to note that the analytical toe temperatun 
files do not necessarily resemble those of a typical rewa: 

116 / FEBRUARY 1 9 7 3 Transactions of the ASME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(3 = 1.3 T0=6Sec 
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H=1.355 x 10 

VD=12 

TD= Delay lime, time required for 
skin temperature lo reach 25.2 C 
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pig, 4 Skin temperature response curves for the step changes in blood 
flow rate with constant heat-transfer coefficient and blood inlet tempera-
lure 
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Fig. 6 Comparison of analytical and experimental blood flow rates, 
case II 
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Fig. 5 Comparison of analytical and experimental blood flow rates, Fig. 7 Comparison of analytical and experimental blood flow rates, 

case III 

coefficient. I t is not unreasonable in the light of clinical experi
ence that blood inlet temperature to the toes should fall below 
rectal temperature in the initial stages of rewarming. This was 
tested by applying a ramp function to the toe inlet temperature 
profile. As seen in Fig. 6 the experimental-analytical compari
son is greatly improved. 

Results from case I I I are presented in Fig. 7. A smaller in
crease in temperature and lower specific blood flows, in general, 
were observed for this terminal case. Stabilization of tympanic-
membrane temperature was not as sharply defined as in other 
cases, indeed there may have been an adjustment of the set point 
within the period indicated in Fig. 7. A strong increase in ex
perimental blood flow is observed at the end of this period. This 
would be in agreement with the thermoregulatory-response 
theory. However, this pulse is unsupported by the skin-tempera
ture-derived blood flow for constant inlet temperature. A 
second increase in flow obtained at 6000 sec, which is reflected in 
the analytical results; this second rise corresponds to the transient 
improvement in status of the patient at the sixth postoperative 
hour (see Case Studies). A ramp inlet temperature profile was 
tried in order to improve the experimental-analytical comparison. 
As in case I I the ramp function provided a better fit to the ex
perimental data than did the case of constant inlet temperature. 

pattern (cf. case I I , Fig. 2, where the knee of the curve is less 
sharply defined). Based on this evidence the analytical model 
was modified to treat a variable blood flow rate, and equation (4) 
was used for comparison with experimental data. 

Blood Flow. The analytical and experimental toe blood flows 
and the experimental temperatures are shown for ease l in Fig. 5. 
Blood inlet temperature was assumed to be 39 deg C, which is 
the rectal temperature. Agreement with experimentally deter
mined blood flow rates is achieved for values of the heat-transfer 
coefficient between 3.2 and 4.0 X 10~4 cal/sec-cm2-deg C, which 
are in the range of expected values for the particular experimental 
condition (Tambient = 25 deg C). The analytically determined 
blood flow rates follow the trends of increasing and stabilizing 
surface temperature. The tympanic-membrane temperature 
stabilized at the time indicated by the arrow in the figure. Ac
cording to the thermoregulation theory discussed in the Intro
duction, a chain of events culminating in peripheral vasodilation 
•ind increased blood flow to the toes would occur soon after 
stabilization of tympanic temperature. 

The blood flow comparisons for case I I are given in Fig. 6. 
ine analytical blood flow is computed with inlet temperature 
assumed equal to rectal temperature and a heat-transfer coeffi
cient of 4.7 X 10-" eal/sec-cm2~deg C. The detailed agreement 
°' Predicted and observed blood flow is not as good as for the 
Previous case. Trends are reproduced, but a decrement at the 
early times is apparent. A heat-transfer coefficient of 6.3 X 
10~4 increases flow by only 0.1 X 10 "4 ml/cm3-sec at t = 1000, 
*hile increasing How by 2 X 10~4 ml/cm3-sec at t = 11,500. 

'early the response is skewed by such a change in heat-transfer 

Discussion 
Although the model accounts for metabolic heat-generation, 

cf. Sm/thbCb, this term has been explicitly assumed to be small 
compared to the blood inlet temperature. The model assumes a 
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homogeneous isotropic medium, and the thermal properties used 
are those for water [15]. In general, for constant values of 
blood inlet temperature and surface heat-transfer coefficient, 
analytical values of the blood flow rates are determined when the 
analytically computed surface temperature matches the experi
mentally measured surface temperature. Under the experimen
tal conditions of constant ambient temperature and a quiet 
patient, large variations in surface heat-transfer coefficient are 
unlikely. 

Case I gives good agreement between theory and experiment, 
whereas in cases II and I I I the model (with constant blood inlet 
temperature) predicts lower values of the blood flow rate during 
early times in the rewarming pattern. In this instance the 
model appears to be dominated by the trends established by the 
surface temperature profile. There is an observable pattern 
between changes in measured blood flow and skin temperature, 
and the model on this basis correctly predicts the trends in the 
blood flow rate. 

In cases I I and I I I there is a delay between stabilization of 
central temperature and onset of the toe response. This may be 
indicative of sluggish flow and increased residence time in the 
peripheral bed. Cold limbs were observed in both these eases 
and it is therefore reasonable tha t heat loss occurred prior to 
blood entry into the capillary network of the toe. This provides 
a rationale for application of a time-varying blood inlet tempera
ture. 

Several ramp-function inlet temperature distributions were 
modelled in order to obtain the best fit with the plethysmo-
graphic data. Beginning the ramp at the time the set point was 
achieved did not provide the best agreement. The time dura
tions of the "best-fit" ramps were quite different for the two 
cases (4000 and 1000 sec). Ramp height was also chosen for 
best-fit results. More clinical data and experience in application 
of the model will be necessary before rules can be developed for 
construction of the inlet temperature function. I t is clear, how
ever, tha t a time-vaiying inlet temperature substantially im
proves the agreement of the model with measured blood flow rate. 

The maximum measured values of toe blood flow in cases 
I and I I were 12.3 and 7.0 X 10~4 ml/cm3-sec respectively. 
Skin blood flow has been estimated at 20 X 10~4 ml/cm3-see 
[16] Finger and toe blood flow rates have been measured by 
water plethysmography with values around 50 X 10 ^4 ml/cm3-
sec [13]. Agreement with literature values was not really ex
pected, since the patients considered in this study have weak 
hearts and have undergone the t rauma of surgery. 

Our data suggest that there is no correlation between cardiac 
output and toe temperature in the early recovery period following 
cardiac surgery. This is in contrast to the results of Joly et al. 
[7] for patients in shock. I t should be noted that cardiovascular 
status in shock is quite different than in early surgical recovery. 
Hence the results are not necessarily inconsistent. 

The detailed responses and interactions of multiple-organ 
systems are not well understood, particularly so in states of dis
ease. One therefore approaches correlations of physiological 
parameters with caution. The physician must manage the 
cardiac patient in spite of such difficulties, and places emphasis 
on pump function and those indicators of pump function which 
he can measure. I t is therefore a curious but potentially signifi
cant fact that a rise in toe temperature of 3 deg C or less, at the 
stabilization of central temperature, should correlate with mor
tality and morbidity. The hypothesis outlined in the Introduc
tion may be amplified in light of the data presented herein. 
When toe skin temperature is lower than 27 deg C, and hypo
thalamic temperature is below the set point, impulses from cold 
receptors in the toe do not lead to peripheral vasodilation. Once 
the set point is achieved, as evidenced by stabilized tympanic-
membrane temperature, a vasomotor response takes place leading 
to a steady increase in blood flow above a basal level of 1 to 3 
X 10~4 ml/cm3-sec. This is accompanied by an increase of 3 to 
10 deg C in toe temperature. The case exhibiting a transient 

increase in toe blood flow was unable to sustain this perfusion 
Why was peripheral flow not maintained? The peripheral Vaso. 
dilation is assumed to occur in two steps. First, vasoconstrictor 
tone must be released; this is assumed to be under control of the 
thermoregulator/vasomotor system. Next, a force is require;] 
to open the peripheral bed; this is assumed to be provided by 
pressure impulses transmitted down the arterial tree. If cardiac 
output is low and vasoconstriction continues in the arterial/ 
arteriolar net upstream of the toes (which may involve a multi
plicity of collateral pathways), the critical opening pressure 
cannot be initiated or maintained. The control in this case is 

transferred to vasomotor action at an as yet unspecified site 
The initial flow to the toes is dictated by the need to lose heat ii, 
order to maintain central temperature at the set point. The 
results indicate that in the hierarchy of vasomotor controls this is 
a less significant requirement. As such, and in the light of the 
predictability of the onset of toe blood flow, the physician has a 
tool for the early warning of cardiovascular dysfunction. 

Conclusions 
The aualytica1 model predicts reasonable values of lime-

varying toe blood flow. Including a physiologically reasonable 
time-varying blood inlet temperature in the model provide,? good 
agreement with blood flow measured by venous-occlusion plethys
mography. 

Experimental measurements of the flow following peripheral 
rewarming are lower than those reported in the literature for 
normal subjects. There is no correlation between toe tempera
ture and cardiac output in early recovery from cardiac surgery, 

Heat convection predominates in the bulk of this tissue. The 
model, which had previously been verified in a conduction-
dominated tissue, is validated for this situation. 
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An Experimental Study of Combined Forced- and 
Free-Convective Heat Transfer from Flat Plates to 
Air at Low Reynolds Numbers 

P. H. OOSTHUIZEN1 and M. BASSEY2 

Introduction 

M E A N heat-transfer rates from thin flat plates aligned with a 
forced velocity have been measured under such conditions tha t 
the effects of the buoyancy forces cannot be ignored, i.e., in the 
region of combined- or mixed-convective flow. A number of 
analytical studies of this problem have, of course, been under
taken, see, for example, [1, 2] .3 However, these studies have all 
been based on the use of the boundary-layer equations, while the 
range of variables covered by the present tests is such tha t the 
boundary-layer approximations are not applicable. The range of 
variables is also different from those covered in previous experi
mental studies [3, 4] . 

Apparatus 

The tests were carried out in an open-return wind tunnel with 
an 8- X 4-in. working section. The test plates consisted of 
0.001-in-thick platinum ribbons which were mounted on the 
center line of the wind tunnel and spanned the 8-in. width of the 
tunnel as shown in Fig. 1. The plates were clamped between 
aluminum blocks on the walls of the tunnel, and these blocks had 
screw adjustments which allowed the ribbons to be kept t au t and 
aligned with the flow. Four ribbons were used, these having 
lengths L as defined in Fig. 1 of 0.125, 0.25, 0.5, and 1 in. 

The entire wind tunnel was mounted on a frame which could 
be pivoted on a horizontal axis parallel to the test plates. In this 
way the air stream and the test plates could be set a t any angle a 
to the vertical. Results are reported here for angles a of 0 deg, 
i.e., for assisting flow, and 18C deg, i.e., for opposing flow. 

The plates were heated by passing a d-c current through them. 
The power dissipated was then obtained by measuring the cur
rent passing through the plate and the voltage drop across the 
entire plate. Some of the heat generated was, of course, con
ducted from the plate to the clamping blocks, and in order to 
calculate the heat-transfer rate a correction for this end loss had 
to be made. This was done by calculating the end loss using a 
one-dimensional fin-type analysis. In no case did the end loss 
so found exceed 10 percent of the total heat generated in the plate. 
The adequacy of this method of determining the end loss was 
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Fig. 1 Arrangement of test plates in wind tunnel 

confirmed by repeating some of the tests with voltage taps at- j 
tached to the plates a t a distance of 1 in. from each clamping j 
block, thus allowing the heat generated over the central portion j 
of the plate to be found and eliminating the need to apply an end- j 
loss correction. j 

The mean temperature of the plates was determined by cal- i 
culating their resistance from the voltage and current readings j 
and using their measured resistance in the unheated state and j 
their measured temperature coefficient of resistance. j 

In the present s tudy the heat-transfer rate from the surface of 
the plates to the air was not uniform due to internal heat conduc- j 
tion. An order-of-magnitude analysis suggests, in fact, tha t a i 
uniform-surface-temperature condition was more nearly simu
lated than a uniform-surface-heat-flux condition. 

The velocity of the air in the wind tunnel could be varied be
tween 0 and about 1 fps. The velocity was measured using a 
DISA low-velocity anemometer. Because of the low velocities | 
used in the present work, the boundary layers on the walls of the J 
tunnel were relatively thick and the velocity was not uniform 
across the width of the plate. In all cases the Reynolds numbers 
used to describe the results are based on the average velocity. 
In no case did this differ by more than 5 percent from the center- j 
line velocity. 

Results and Discussion 

In combined convection 

NL = function (RL, GL, Pr, a) (1) 

where NL = FiL/k is the mean Nusselt number, GL = Pg(Tv> ~ 
Ta)L

z/v2 is the mean Grashof number, Pr is the Prandt l number, 
and a is the angle of the plate to the vertical. Tw is, of course, 
the mean plate temperature which is also used in determining the 
mean heat-transfer coefficient h. 

In the present tests, P r remained effectively constant. As pre
viously mentioned, measurements were undertaken a t a = 0 and 
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180 deg. At each of these values of a, measurements were made 
at a series of different velocities and a series of different plate 
temperatures. Results will, however, only be reported here for 
a mean plate temperature of 120 deg F above ambient. This 
temperature difference corresponds to Grashof numbers of ap
proximately 190, 1450, 12,000, and 106 for the 0.125-, 0.25-, 0.S-, 
and 1-in. plates respectively. The variation of ArL with RL for 
each of the plates for these values of OL for assisting and opposing 
(low is shown in Fig. 2. Fluid properties have been evaluated at 
the mean film temperature. 

Also shown in Fig. 2 are the variations of NL for the limiting 
cases of purely free convection and purely forced convection. 
The variation in purely free convection was obtained by carrying 
out tests at zero velocity, the results so obtained being well fitted 
by the equation 

NL free = 1 + 0.42(?i»® (2) 

The tests did not extend to velocities which were high enough 
to determine the variation in purely forced convection with the 
same degree of confidence, but the following equation appears to 
ijive an adequate representation: 

NL 0.4 + 0.59iSi0-5 
(3) 

At large values of RL this equation reduces, effectively, to 
"Morccd = 0.59-ffii0'5, the result given by boundary-layer theory. 

l'roin Fig. 2 it will be seen that in the combined-convection re-
8|0'i in assisting flow the heat-transfer rate is higher than in either 
purely forced or purely free convection. In opposing flow, how-
tV0l'i as RL increases, the heat-transfer rate drops below the 
purely free-convective rate, and at higher values of RL it drops 
Wow the purely forced-convective rate. I t then passes through 
""iniinum, and had tests been carried out at higher values of RL 

'•' would then have risen toward the purely forced-convection 
variation. 

1,1 [S] it was shown that the results for assisting combined-con-
wtive heat transfer from cylinders could be correlated using an 

Nation of the form 

NL = ( i V i f r 0 e 4 . + NL forced")0'25 (4) 

This 
•lie 

equation was obtained by considering the similar forms of 

lioi)S. 
Purely forced- and purely free-convection correlation equa-

Equations (2) and (3) for the flat plate do not show this 

j°urnal of 

similarity, but equation (4) will here be regarded as purely em
pirical and assumed also to apply to flat-plate assisting flow. 
Substituting equations (2) and (3) into equation (4) gives 

NL = RL0-1 
1 

RL^6 + 
/ G L \ 0 . 2 5 | 4 

0.4 M 
h 0.59 

RL°-6 
(5) 

At large values ot RL this gives NL/RL0* = function (GL/RL2) 
as predicted by boundary-layer theory. 

A comparison between equation (5) and the experimental re
sults for assisting flow is shown in Fig. 2, and the agreement will 
be seen to be reasonably good. 
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Effect of Buoyancy on Forced Convection in a 
Two-dimensional Wall Jet along a Vertical Wall 

J. W. YANG1 and R. D. PATEL2 

Introduction 

I T IS known that the heat-trahsfer rates in wall jets are an order 
of magnitude higher than those usually associated with gaseous 
heat-transfer media. However, in wall jet flow, the forced con
vection decreases rapidly due to the decay of jet velocity as it 
expands along the solid wall. In turbulent wall jets, the heat-
transfer rate reaches a maximum at a short distance from the 
nozzle exit and then decreases sharply with the increase of dis
tance from the nozzle exit [1] .3 For laminar wall jets, the heat-
transfer rate exhibits a monotdnic decrease with the distance [2]. 
Akfirat [2] has shown tha t the jet flow is of laminar type at 
Reynolds numbers less than 190. The Reynolds number is 
based on the nozzle width and the jet velocity at the nozzle exit. 
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a mean plate temperature of 120 deg F above ambient. This 
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of magnitude higher than those usually associated with gaseous 
heat-transfer media. However, in wall jet flow, the forced con
vection decreases rapidly due to the decay of jet velocity as it 
expands along the solid wall. In turbulent wall jets, the heat-
transfer rate reaches a maximum at a short distance from the 
nozzle exit and then decreases sharply with the increase of dis
tance from the nozzle exit [1] .3 For laminar wall jets, the heat-
transfer rate exhibits a monotdnic decrease with the distance [2]. 
Akfirat [2] has shown tha t the jet flow is of laminar type at 
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Fig. ! Physical model and coordinates 

(Cl 

It is for the low-speed laminar wall jet that the buoyancy effect 
is expected to be significant in the region downstream of the jet 
nozzle. The analysis of mixed natural and forced convection in a 
two-dimensional wall jet along a vertical isothermal wall is pre
sented in this note. 

Analysis 

Several possible physical models are illustrated in Fig. 1. 
Sketch (a) represents an impinging jet and sketches (6) and (c) 
show wall jets along or opposite to the gravitational field. For 
the impinging jet, studies [1, 2] have shown that away from the 
impinging region the flow is essentially a wall jet. The jet flows 
can be designated as aiding flows and opposing flows according to 
the flow direction being parallel or opposite to the buoyancy force. 
For the case of upward jet flow, it is required to have U> > t„ for 
aiding flow and £,„ < 4„ for opposing flow. The above criteria 
will be interchanged for jets flowing downward. For laminar, 
steady, and constant-property jet flow, the conservation equa
tions, in dimensionless form, are 

U: 
bX 

bU bV 
— -| = 0 
bX bY 
bU = OT7± g/frfa - U 0 
bY dF8 t/m

3 

u^ + v™ 
bX bY 

1. J ^ 
Pr dF2 

(1) 

(2) 

(3) 

and 

U = u/Um V = v/Um Y = yUm/v 

6 = (i - «„)/(«» - U) X = xUm/v 

where x and y denote distance along and normal to the wall; u 
and v are the corresponding velocity components; Um is a constant 
reference velocity related to the exterior momentum flux [3]; t is 
the static temperature; and v, g, /3, and Pr are the kinematic 
viscosity, gravity force, coefficient of thermal expansion, and 
Prandtl number, respectively. The last term on the right side of 
equation (2) denotes the buoyancy force due to the temperature 
difference. The positive sign refers to the upward flow and 
negative sign to the downard flow. The boundary conditions are 

t/(0) = 0 V(0) = 0 0(0) = 1 

E7(oo) = 0 0(boj = 0 
(4) 

To solve the above equations, the reduced velocity / and tem
perature 6 are expanded in series 

Fig. 2 Representative temperature and velocity profiles; (1) no buoyancy 
force; adding flow: (2) f = 0 .125, (3) f = 0.25; opposing flow: (4) :• : 

0.125, (5) f = 0.25 

a/a- . 

Q / Q o 

Fig. 3 Ratios of Nusselt number, wal l shear stress, volume flow rats.. 
maximum velocity, and jet width at Pr = 0.7; (1) adding flow; (2) oppoi- j 
ing flow 

6(TI, n = do(ij) + ro,(rj) + r»e,(i)) + . . . i" | 
where the Glauert transformations [3] have been modified :i>- i 

649/3(C„ - ia J-
T, = F x - v y 4 <A = z'/ydj.r) r 

= 64«ii !',: 

f(n, f) = Mv) + tMvl + PMv) + 0) 

Using the above transformations and the proposed veloci'y ••'•' 
temperature variables, equations (l)-(3) are reduced to a *''•'[ 
ordinary differential equations governing the functions fi »"''/. 
(i = 0, 1, 2, . . .). The solution of these ordinary diffeivn"" 
equations provides the approximations of the present prob.1'11'1. 

Discussion of Results 

Numerical solutions were obtained for the first three a]>l,:"*' 
mations at Pr = 0.7. Representative graphs of tempe1'''"'1'' 
and velocity profiles are shown in Fig. 2. It is seen that in H'-'J" • 
flow the buoyancy force acts like a favorable pressure grii'l'1'-
and the flow is accelerated in the inner region near the wall- ' _ 
acceleration increases the temperature gradient at the wall w>"' 
results a higher heat-transfer rate. On the other hand, '" l ' ' 

122 /FEBRUARY 1973 Transactions of the ASME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



rnes narrower with the increase of the buoyancy effect. The 
'dth of the jet 5 is defined such that u = 1/iumax at y = 8. 

rr»i,ege effects are reversed in the opposing flow as indicated in 
Via 2. The effect of buoyancy on the wall jet is indicated in Fig. 
„ KV the ratio of the local Nu and r in the presence of buoyancy 

that of Nuo and To in the absence of buoyancy. I t is noted 
. t the shear stress and the heat-transfer rate increase with the 

1 novancy in aiding flow and decrease in opposing flow. How-

v e r the effect on the shear stress is much stronger than that on 
the heat-transfer rate. At f = 0.25, the wall shear stress de
creases 77 percent in opposing flow and increases 57 percent in 
aiding fl°w due to the buoyancy force. For the same value of f, 
the reduction of heat-transfer rate is 25 percent in opposing flow 
and the increase is only 13 percent in aiding flow. 

The volume flow rate in a wall jet is known to increase in the 
downstream direction due to the entrainment of fluid particles by 
friction. The effects of buoyancy on volume flow rate, maximum 
velocity, and the jet width are also illustrated in Fig. 3. In 
general, the buoyancy effect is significant only at higher values 
off. 

References 

1 Gardon, R-, and Akfirat, J . C , " H e a t Transfer Character is t ics 
of Impinging Two-Dimensional Air J e t s , " J O U K N A L OF H E A T 

TBANSFEH, T R A N S . A S M E , Series C, Vol. 88, No . 1, F e b . 1966, p p . 

101-108. 
2 Akfirat, J . C , "Transfer of H e a t from an Iso thermal F la t P l a t e 

to a Two-Dimensional Wall J e t , " Proceedings of 3rd International 
Heat Transfer Conference, Vol. 2, 1966, p p . 274-279. 

3 Glauert, M . B. , " T h e Wal l J e t , " Journal of Fluid Mechanics, 
Vol. 1, 1956, p p . 625-642. 

Free Convection at a Vertical Plate with Uniform 
Flux Condition in Non-Newtonian Power-Law Fluids 

T. Y. W. CHEN1 and D. E. WOLLERSHEIM2 

THE recent work by Selman and Newman [1]3 can be extended 
lo include non-Newtonian fluids by applying a technique similar 
lo that developed by Acrivos [2] for non-Newtonian laminar free 
convection with an isothermal boundary condition. 

Under the same assumption as that of [1, 2], the governing 
partial differential equations are transformed to ordinary differen
tial equations using the following substitutions:4 

f = 
Q r c l / ( W + 4 ) P r p N I O N + S ) 

(32V + 2) 
L 

NK3N+2) 

t - tm GvC
lH-N+t> PrcAf'(3W+2) 

gL 

k 
^ (32V + 2) 

W/(3iV+Z) 

(32V + 2) 
(W+2)/(3A'+2) 

'/' 

\gfaL*J 

(1) 

(2) 

(3) 
Q r c l / [2 ( iV +4>iPrc<Ar +2) l(3N +2) 
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N 

(32V + 2) 

X 

NI(3N+2) 

f/' 
2(N + 1) 

2V 
/ 

gfav 

A 
(4) 

Q r c 3/ [2 (W+4)] p r c 2(A'+l ) / (3 iV+2) 

where Grc and Pre are the generalized Grashof number and gen
eralized Prandtl number defined as 

Gr c * ) V 
/gpqY 

Pre = 

jn/ \ k ) 

PCP /my"*"*"4 ' L2W-D/(iV+« /gfi. 

T W V k 
A8W-l ) / i 

(5) 

(6) 

in which m and N are the consistency index and the power-law 
fluid index defined from an empirical shear-stress-strain-rate rela
tionship known as the characteristic equation of power-law fluids 

by 
(7) 

The set of coupled ordinary differential equations, namely the 
equation of motion and the equation of thermal energy, becomes 

+ jz U")N = 0 (8) 

(9) 0" + 2(2V + l ) / 0 ' - Nf'6 = 0 

The boundary conditions in the inner (diffusion) region are 

/ ' (0 ) = /(0) = 0'(O) + 1 = /"(<*>) = 0(°°) = 0 

where primes denote differentiation with respect to f. 
Equations (8) and (9) and their boundary conditions have been 

solved using the procedure of Nachtsheim and Swigert [3] to 
find the starting values for the fourth-order Runge-Kut ta nu
merical integration scheme. These starting values are given in 
Table 1. 

The local temperature difference U — tm and the local shear 
stress To at the plate are 

to - ta = (32V + 2) -
0(0) 

L 

/"(0) 

& 
k Gvc1KN+i) -Prc

Nli3N+2) 

~]N 

(10) 

(32V + 2) 

Q r c W / ( W + 4 ) p r cW2 / (3Af+2) 

(11) 

where 

'-[?-(?r 
(32V + 2) • 

Pre 

(«+2)/(3W+2) 

On any given surface along the vertical plate, equation (10) in
dicates U — t„ is proportional to £w'i3N+». Thus the variation 
of the wall temperature with distance along the wall is 

Table 1 Numerical values of dimensionless temperature difference, 
shear stress, and average heat-fransfer parameter 

iV 
0.1 
0.5 
1.0 
1.5 

/"(0) 
5.0558 
1.1145 
0.811846 
0.7497 

fl(0) 
1.3188 
1.3026 
1.1474 
1.0286 

N u / G r 4 " 12<<V +D]PrAw/(3Jv+i) 
Uniform 

Uniform Flux Temperature 
present Acrivos Chen 

work [2] [7] 
0.6063 0.60 0.6246 
0.6176 0.63 0.6212 
0.6697 0.67 0.6703 
0.7013 0.71 0.6998 
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partial differential equations are transformed to ordinary differen
tial equations using the following substitutions:4 

f = 
Q r c l / ( W + 4 ) P r p N I O N + S ) 

(32V + 2) 
L 

NK3N+2) 

t - tm GvC
lH-N+t> PrcAf'(3W+2) 

gL 

k 
^ (32V + 2) 

W/(3iV+Z) 

(32V + 2) 
(W+2)/(3A'+2) 

'/' 

\gfaL*J 

(1) 

(2) 

(3) 
Q r c l / [2 ( iV +4>iPrc<Ar +2) l(3N +2) 

Kngineer, York Division Engineering Department, Borg-Warner 
("''P., York, Pa. Assoc. Mem. ASME. 

Associate Professor, Department of Mechanical and Aerospace 
'-'Usmeering, University of Missouri, Columbia, Mo. 

" Numbers in brackets designate References at end of technical 
Wicf. 

nota t ion is t h a t of [1 ] except as noted, 
i, *• "ntributed by t h e H e a t Transfer Division of T H E A M E R I C A N 
'" WETy OF M E C H A N I C A L E N G I N E E R S . Manuscr ip t received by t h e 

l0;>t Transfer Division Ju ly 3, 1972. 

N 

(32V + 2) 

X 

NI(3N+2) 

f/' 
2(N + 1) 

2V 
/ 

gfav 

A 
(4) 

Q r c 3/ [2 (W+4)] p r c 2(A'+l ) / (3 iV+2) 

where Grc and Pre are the generalized Grashof number and gen
eralized Prandtl number defined as 

Gr c * ) V 
/gpqY 

Pre = 

jn/ \ k ) 

PCP /my"*"*"4 ' L2W-D/(iV+« /gfi. 

T W V k 
A8W-l ) / i 

(5) 

(6) 

in which m and N are the consistency index and the power-law 
fluid index defined from an empirical shear-stress-strain-rate rela
tionship known as the characteristic equation of power-law fluids 

by 
(7) 

The set of coupled ordinary differential equations, namely the 
equation of motion and the equation of thermal energy, becomes 

+ jz U")N = 0 (8) 

(9) 0" + 2(2V + l ) / 0 ' - Nf'6 = 0 

The boundary conditions in the inner (diffusion) region are 

/ ' (0 ) = /(0) = 0'(O) + 1 = /"(<*>) = 0(°°) = 0 

where primes denote differentiation with respect to f. 
Equations (8) and (9) and their boundary conditions have been 

solved using the procedure of Nachtsheim and Swigert [3] to 
find the starting values for the fourth-order Runge-Kut ta nu
merical integration scheme. These starting values are given in 
Table 1. 

The local temperature difference U — tm and the local shear 
stress To at the plate are 

to - ta = (32V + 2) -
0(0) 

L 

/"(0) 

& 
k Gvc1KN+i) -Prc

Nli3N+2) 

~]N 

(10) 

(32V + 2) 

Q r c W / ( W + 4 ) p r cW2 / (3Af+2) 

(11) 

where 

'-[?-(?r 
(32V + 2) • 

Pre 

(«+2)/(3W+2) 

On any given surface along the vertical plate, equation (10) in
dicates U — t„ is proportional to £w'i3N+». Thus the variation 
of the wall temperature with distance along the wall is 

Table 1 Numerical values of dimensionless temperature difference, 
shear stress, and average heat-fransfer parameter 

iV 
0.1 
0.5 
1.0 
1.5 

/"(0) 
5.0558 
1.1145 
0.811846 
0.7497 

fl(0) 
1.3188 
1.3026 
1.1474 
1.0286 

N u / G r 4 " 12<<V +D]PrAw/(3Jv+i) 
Uniform 

Uniform Flux Temperature 
present Acrivos Chen 

work [2] [7] 
0.6063 0.60 0.6246 
0.6176 0.63 0.6212 
0.6697 0.67 0.6703 
0.7013 0.71 0.6998 
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where L is the length of surface for which the flow is laminar. 
Note that equation (12) is the same as the exact solution for New
tonian flow derived by Sparrow and Gregg [4] when iV equals 1. 
I t indicates the rate of increase of the wall temperature is greater 
near x — 0, and the variation increases as N decreases. 

I t is interesting to observe, as has been discovered in [4] for 
Newtonian fluids, the relationship between the uniform-wall-
temperature case and the uniform-surface-heat-flux case. If we 
define a mean heat-transfer coefficient % as 

h Q 

(to - U i 

the mean Nusselt number Nu is then obtained from equations 
(5), (6), and (12) 

Nu 
(3N+2) Q rcl/(W+4) proN/(3W+2) 

0(0) ~ 
(13) 

Furthermore, we may redefine the generalized Prandtl number 
and the generalized Grashof number for the uniform-surface-
heat-flux case in the same manner as Acrivos [2] for the case of 
uniform wall temperature. 

Pr , 
pcp /TOY'<I+A'> 

(14) 

k \p 
[L(3g(t0 ~ kJipfJv-D/isw+Djiu-wd+Ao 

(15) 

Eqxiation (13) can be rearranged to obtain 

Nu 
GVAU[2W+l)l-pYANl(W+l) 

2 

3iV 

[0(O)]» 
(16) 

Equation (16) is compared with the results for a uniform-tem
perature plate for various power-law fluid indices in Table 1. 
The agreement of the values of Nu/GrA1 ' l ! ( w + 1 ) iPrA

7" ( 3 W + 1 ) 

evaluated using (t0 — i„)t/a for the uniform-heat-flux case with 
those for the uniform-wall-temperature case verifies the point 
made by Sparrow and Gregg, and is extended now to include non-
Newtonian fluids. This has been recently applied with success 
in correlating the experimental da ta of Emery et al. [5]. 

Finally, the present theoretical work is compared with the ex
perimental data reported very recently by Dale and Emery [6] 
in Figs. 1 and 2. Further details regarding the present work may 
be found in [7]. 
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High-Prandtl-Number Free Convection for Uniform 
Surface Heat Flux 
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Nomenclature 
C — dimensional constant, equation (1) 
F = velocity function, equations (5) and (6) 
/ = nondimensional stream function, equation (1) 
g = acceleration due to gravity 

Grx* = local Grashof number, gftqxi/(kv'i) 
k = 

N u , = 
q = 

t = 
u, v = 
x, y — 

7 
V 
f 
e 
$ 

v 

local Grashof number, g\ 
thermal conductivity 
local Nusselt number, equation (14) 

= constant surface heat flux 
= temperature 
= velocity components along x and y directions 
= coordinates along and normal to plate 
= coefficient of thermal expansion of fluid 
= constant, equation (6) 
= similarity variable, equation (1) 
= transformed similarity variable, equations (5) and (6) 
= nondimensional temperature, equation (1) 
= nondimensional transformed temperature in inner 

laj'er, equation (5) I 

= kinematic viscosity 
= dimensional stream function, equation (1) 
= Prandt l number, equation (3) 

Subscripts 

co = wall conditions 
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= conditions at large distance from plate surface 
j c= inner layer 
2 = outer layer 

Introduction 

TTBBIO-CONVECTIVE heat transfer to a high-Prandtl-number 
fluid from a heated semi-infinite flat vertical surface has been 
•tudied by many, including LeFevre [ l ] , 2 Stewartson and Jones 
[2] Kuiken [3], Roy [4, 5], Eshghy [6], and Selman and New
man [71- Of these, the first six dealt with isothermal surfaces. 
Particularly, [3-6] presented results in which the Prandtl number 

curred explicitly; [7] provided solutions for the uniform-heat-
flux boundary conditions for infinite Prandtl number. 

yfe shall in this communication study the uniform-heat-flux 
ease by the double-boundary-layer method described in detail 
bv R°y l-'r']' ^ e s n a ^ P r e s en t results in series in powers of a ~ '''-
and compare them with the exact results of Sparrow and Gregg 
[8] and the approximate ones of Sparrow [9] obtained on applica
tion of the Karman-Pohlhausen integral method. 

Mathematical Formulation 

Sparrow and Gregg [8] obtained similarity solutions of the 
boundary-layer equations for the conservation of mass, momen
tum, and energy in the following form: 

^ _ d\p 
dy dx 

and 

V Cy/x1^ 

f = SvCx'/sfiri) ta - t qx ' 

~kC 
6W C 

\5fcj>7 

(1) 

where / and 6 satisfy the coupled ordinary nonlinear differential 
equations 

/ ' " + 4 / / " - 3( / ' ) 2 - 6 = 0 

6" + <r(4/0' - f'6) = 0 

subject to the boundary conditions 

/ (0) = / ' (0 ) = 0 fl'(O) = 1 

/ ' ->- 0 6-+0 as n-+ < 

(2) 

(3) 

(4) 

Inner and Outer Layers 

For large values of a the whole boundary layer can be divided 
into two regions: one of thickness 0(c~1 ' ' l i) in which the tem
perature difference is brought to zero and one of thickness 
0(<r'/'°) in which the velocity parallel to the surface is brought to 
Wo again. I t has been shown already that in the case of iso
thermal surfaces these thicknesses are 0(<r - 1 '4) and 0(cr1''*) re-
•I'cetively. We shall deal with these layers separately, call them 
the inner and outer layers, and introduce different transforma
tions suitable for each as follows: 

Inner layer: 

AV) = <r-,/bmi) (5) 
e(v) = <r-'A*i(fi) 

"liter layer: 

f2 = yff-^'r, 

f(v) = 7<^V '°^(W (6) 
6(V) = 0 

"here 7 is a constant to be specified suitably later. The func
tus Fi, $] , and Fi satisfy the equations 

Fi'" - $1 + o-~1{4ftf," - 3(i<V)2} = 0 (7) 

I $ 1 " + 4 F i $ i ' - i V $ i = 0 (8) 

, , J> umbers in brackets designate References at end of technical 
'nef. 

Fi'" + 4 i W - 3( /V) 2 0 (9) 

In the above, a prime denotes differentiation with respect to 
the appropriate variable fi or f2. Also, it should be noted that 
the boundary conditions at t] = co are redundant for Fi and 
those at y = 0 are so for Fi. Further, the equations (7)-(9) 
suggest that series solutions in some negative powers of a exist. 
The appropriate series and the boundary conditions at f! = co 
and at f 2 = 0 are determined by matching the inner solutions for 
large values of f j with the outer solutions for small values of f2. 
Proceeding up to terms 0(a~i), they are obtained to be 

i^i 

* i 

£ a-^Fu 

I ) a-i^u 

i = 0 

(10) 

and 

Fw"( - ) = 0 
^20(0) = 0 

Fm'(Q) = 1 [assuming y' = lim iV(fi)] 
ri-»«> 

i V ' ( - ) = y3Fw"(0) 

Fs,(0) = lim 

Fn'(0) = lim 

- FMi) - 7fi 
_7 

- , * V ( f i ) - 7fAo"(0) 
y2 

Fn"(">) = 73lim [fti"(0) + 37f.] 
fi-»°> 

Fn(0) = lim 

F22'(0) = lim 

— Fnifr) - f.iV(O) - - ^ 7 
. 7 2 

\Fn'{^)- 7fi Fa"(0) ~ 

(11) 

7 2 f i W ( 0 ) 

b^ 
The rest of the boundary conditions are 

Fu(fl) = * V ( 0 ) = Fy ' ( - ) = *io'(0) - 1 

= $ „ ' ( 0 ) = $12 '(0) = $ i y(co) = 0 

For the details of matching see Roy [5]. 

(12) 

Solutions 

The nine equations obtained from (7)-(10) and subject to the 
boundary conditions (11) and (12) are solved numerically on an 
electronic computer and the following results are obtained: 

7 = 0.663902 

Fio"(0) = 0.811546 $io(0) = -1.147565 

Fn" (0 ) = -0.173879 $n(0) = -0.226844 

F,8"(0) = 0.134655 $ i 2(0) = 0.030392 

F20(0) = 0.0 Fw'(0) = 1.0 i V ' ( 0 ) = -1.837319 (13) 

y?21(0) = -0 .300701 fti'(0) = 0.732916 

i V ' ( 0 ) = -1.399446 FM(0) = -0 .311263 

i V ( 0 ) = 0.804204 Fm"(Q) = -1 .578787 

Heat Transfer 
The corresponding Nusselt number has been defined by Spar

row and Gregg [8] as 

Nu* = qx/[k(tw - („)] (14) 

With the help of (1), (5), (10), and (13) we have equation (14) 
reduced to 
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(o-Gr^/S) '7 5 = Nus(1.1476 + 0.2268o-- , ' 's - 0.0304c-1) (15) 

In Table 1 we compare our results with those of Sparrow and 
Gregg [8] and Sparrow [9] for a = 1, 10, 100, the three large 
Prandtl numbers dealt with by Sparrow and Gregg [8]. 

References 
1 LeFevre, E. J., "Laminar Free Convection from a Vertical Sur

face," Proceedings of Ninth International Congress of Applied Me
chanics, Vol. 4, 1950, pp. 168-173. 

2 Stewartson, K., and Jones, L. T., "The Heated Vertical Plate at 
High Prandtl Number," Journal of the Aeronautical Sciences, Vol. 24, 
1957, pp. 379-380. 

3 Kuiken, H. K., "An Asymptotic Solution for Large Prandtl 
Number Free Convection," Journal of Engineering Mathematics, Vol. 
2, 1968, pp. 355-371. 

4 Roy, S., "A Note on Natural Convection at High Prandtl Num
bers," International Journal of Heat and Mass Transfer, Vol. 12, 1969, 
pp. 239-241. 

5 Hoy, S., "Double-Boundary-Layer Concept in Free Convection 
at High Prandtl Numbers," Indian Journal of Physics, Vol. 44, 1970, 
pp. 488-494. 

6 Eshghy, S., "Free Convection Layers at Large Prandtl Num
bers," ZAMP, Vol. 22, 1971, pp. 275-292. 

7 Selman, J. R., and Newman, J., "High Sc Limit of Frei 
vection at a Vertical Plate With Uniform Flux Condition," Jo 
OF HEAT TBANSFBR, THANS. ASME, Series C, Vol. 93, No. 4 
1971, pp. 465-466. 

8 Sparrow, E. M., and Gregg, J. L., "Laminar Free Com 
From a Vertical Plate With Uniform Surface Heat Flux," T, 
ASME, Vol. 78, 1956, pp. 435-440. 

9 Sparrow, E. M., "Laminar Free Convection on a Vertica I 
with Prescribed Non-Uniform Wall Heat Flux or Prescribed 
Uniform Wall Temperature," NACATN 3508. 

\'.,v 

••a-.,, 

W 
Table 1 Dimensionless temperature difference, shear stress, antj 
Nusselt number for different values of Prandtl number 

Roy 

[8] ' 

[9] 

1 
10 

100 
1 

10 
100 

1 
10 

100 

- 9 ( 0 ) 
1.34402 
0.76741 
0.46576 
1.35740 
0.76746 
0.46566 

f"(0) 
0.77232 
0.30655 
0.12608 
0.72196 
0.30639 
0.12620 

Nu,(Gr , - , 
0.53!iJ7 
0.94<l l; 
i.55i;ii; 
O.53;;M.-, 

0.94-!.1,'.! 
1.55ii;.-, 
0.547'.^ 
0 . 9 6 M 
1.54.V.:! 

Finite-Element Method Applied to Heat Conduction in 
Solids with Nonlinear Boundary Conditions 

R. E. BECKETT1 and S.-C. CHU2 

By use of an implicit iteration technique, the finite-element method 
applied to the heat-conduction problems of solids is no longer re
stricted to the linear heat-flux boundary conditions, but is extended 
to include nonlinear radiation-convection boundary conditions. 
The, variation of surface temperatures within each time increment is 
taken into account; hence a rather large time-step size can be assigned 
to obtain transient heat-conduction solutions without introducing 
instability in the surface temperature of a body. 

Introduction 

SINCE Zienkiewicz and Cheung [ l ] 3 and Wilson and Nickell 
[2] used the finite-element method to solve steady and transient 
heat-conduction problems, the application of this method to 
heat-transfer analysis for solids has attracted considerable atten
tion. However, very little work has been done on the finite-
element method for a solid with nonlinear radiation-convection 
heat-flux boundary conditions. Recently, Richardson and 
Shum [3] discussed the application of the finite-element method 
to the solution of heat-conduction problems involving nonlinear 
radiation boundary conditions. However, in their analysis the 
contribution due to radiation and convection was calculated en
tirety from the information available at one time step earlier, 
rather than from consideration of the variation of surface tem
peratures between each time increment. This modification, in 
which the effect of radiation is considered, introduces a source of 
instability in the surface temperature; therefore a small time-
increment size is necessary to keep it under control. The pur
pose of this investigation is to extend the finite-element method 
to heat conduction in solids with nonlinear boundary conditions 
so that surface temperature can be varied within each time 
increment. 
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Analysis 

The variational principles introduced by Gurtin [4] and ; \n\\i j 
by Wilson and Nickell [2] are used in this investigation. Tli 
details of the analysis will not be repeated. However, sorrn' i:i-ri< 
assumptions and results will be reviewed for the convenii-n.v ,.; 
the reader. 

The region of interest is divided into a finite number '/ ..• 
subregions with a finite number P of nodal points. Th" \-.\. 
perature a t any position within the element m can be exj >•'.-• • 
in terms of nodal-point temperatures of a complete finite-elm CY 
system by the matrix equation4 

M x , 0 = <b»(x)>{0(i)} 'I 

Differentiation of equation (1) with respect to the spatial • nr 
nates gives a column vector of temperature gradients 

{8m.i(x,t)} = [a,„(x)]{0(Ol * 

Substituting equations (1) and (2) into a functional propo-'1'! k 
Gurtin [4] gives the generating functional for the complete iii'.i' 
element system in the form of a summation over all M elenii ::'i 

M 

+ e„ui*k,i*em,j - 2Pm*p„: 

^PmCm ,\(x,t)dV,n - j jQmSB (x, t)dS,„ 

Performing the first variation of equation (3) and notii.i-' l!-'' 
the resulting expression must vanish for an arbitrary van-Mi"' 
86i results in 

[C]{B(t)) + [K]*{8(t)} = [C]{0(t - At)} + {Q(t)\ 0 

in which the heat-capacity matrix [C], the conductivity •IVI'.M-
[K], and the thermal-force vector {<2(i)} are defined in [2, !• • 

If linear variation of temperature within each time incl••11,l•', 

(t — At, t) is assumed to be valid, then equation (4) become^ 

At 
[C] + - [K] {6(t)} 

At 
[C] - - [K\ {8(t- At)} 

where the vector {F} can be determined by substitution ••' '' 
linear variational temperature expression into the thermf i-""' 
vector {Q,n{t)} which is defined in [2, 3]. 

4 All notations in this technical brief are the same as in [2, 4] l 'v l-
those which are defined here. 
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(o-Gr^/S) '7 5 = Nus(1.1476 + 0.2268o-- , ' 's - 0.0304c-1) (15) 

In Table 1 we compare our results with those of Sparrow and 
Gregg [8] and Sparrow [9] for a = 1, 10, 100, the three large 
Prandtl numbers dealt with by Sparrow and Gregg [8]. 
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Table 1 Dimensionless temperature difference, shear stress, antj 
Nusselt number for different values of Prandtl number 

Roy 

[8] ' 
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1 
10 

100 
1 

10 
100 

1 
10 

100 

- 9 ( 0 ) 
1.34402 
0.76741 
0.46576 
1.35740 
0.76746 
0.46566 

f"(0) 
0.77232 
0.30655 
0.12608 
0.72196 
0.30639 
0.12620 

Nu,(Gr , - , 
0.53!iJ7 
0.94<l l; 
i.55i;ii; 
O.53;;M.-, 

0.94-!.1,'.! 
1.55ii;.-, 
0.547'.^ 
0 . 9 6 M 
1.54.V.:! 

Finite-Element Method Applied to Heat Conduction in 
Solids with Nonlinear Boundary Conditions 

R. E. BECKETT1 and S.-C. CHU2 

By use of an implicit iteration technique, the finite-element method 
applied to the heat-conduction problems of solids is no longer re
stricted to the linear heat-flux boundary conditions, but is extended 
to include nonlinear radiation-convection boundary conditions. 
The, variation of surface temperatures within each time increment is 
taken into account; hence a rather large time-step size can be assigned 
to obtain transient heat-conduction solutions without introducing 
instability in the surface temperature of a body. 

Introduction 

SINCE Zienkiewicz and Cheung [ l ] 3 and Wilson and Nickell 
[2] used the finite-element method to solve steady and transient 
heat-conduction problems, the application of this method to 
heat-transfer analysis for solids has attracted considerable atten
tion. However, very little work has been done on the finite-
element method for a solid with nonlinear radiation-convection 
heat-flux boundary conditions. Recently, Richardson and 
Shum [3] discussed the application of the finite-element method 
to the solution of heat-conduction problems involving nonlinear 
radiation boundary conditions. However, in their analysis the 
contribution due to radiation and convection was calculated en
tirety from the information available at one time step earlier, 
rather than from consideration of the variation of surface tem
peratures between each time increment. This modification, in 
which the effect of radiation is considered, introduces a source of 
instability in the surface temperature; therefore a small time-
increment size is necessary to keep it under control. The pur
pose of this investigation is to extend the finite-element method 
to heat conduction in solids with nonlinear boundary conditions 
so that surface temperature can be varied within each time 
increment. 
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Analysis 

The variational principles introduced by Gurtin [4] and ; \n\\i j 
by Wilson and Nickell [2] are used in this investigation. Tli 
details of the analysis will not be repeated. However, sorrn' i:i-ri< 
assumptions and results will be reviewed for the convenii-n.v ,.; 
the reader. 

The region of interest is divided into a finite number '/ ..• 
subregions with a finite number P of nodal points. Th" \-.\. 
perature a t any position within the element m can be exj >•'.-• • 
in terms of nodal-point temperatures of a complete finite-elm CY 
system by the matrix equation4 

M x , 0 = <b»(x)>{0(i)} 'I 

Differentiation of equation (1) with respect to the spatial • nr 
nates gives a column vector of temperature gradients 

{8m.i(x,t)} = [a,„(x)]{0(Ol * 

Substituting equations (1) and (2) into a functional propo-'1'! k 
Gurtin [4] gives the generating functional for the complete iii'.i' 
element system in the form of a summation over all M elenii ::'i 

M 

+ e„ui*k,i*em,j - 2Pm*p„: 

^PmCm ,\(x,t)dV,n - j jQmSB (x, t)dS,„ 

Performing the first variation of equation (3) and notii.i-' l!-'' 
the resulting expression must vanish for an arbitrary van-Mi"' 
86i results in 

[C]{B(t)) + [K]*{8(t)} = [C]{0(t - At)} + {Q(t)\ 0 

in which the heat-capacity matrix [C], the conductivity •IVI'.M-
[K], and the thermal-force vector {<2(i)} are defined in [2, !• • 

If linear variation of temperature within each time incl••11,l•', 

(t — At, t) is assumed to be valid, then equation (4) become^ 

At 
[C] + - [K] {6(t)} 

At 
[C] - - [K\ {8(t- At)} 

where the vector {F} can be determined by substitution ••' '' 
linear variational temperature expression into the thermf i-""' 
vector {Q,n{t)} which is defined in [2, 3]. 

4 All notations in this technical brief are the same as in [2, 4] l 'v l-
those which are defined here. 
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Tn [2 3] equation (5) is written in the form 

At 
[C] - — [K] At)} 

At , > At , 
+ j {0(0} + — {Q(t - At)} (6) 

This is true only if the boundary conditions are linear. If non
linear boundary conditions are involved, the thermal-force vector 
. difficult to separate into the two thermal-force vectors at two 
discrete times t — At and t. 

Nonlinear Heat Transfer at the Surface 

Since linearity is fundamental to Gurtin's variational principle, 
to consider the radiation-convection boundary condition, the 
following expression for surface heat flux was assumed to be valid: 

q = Bid,/3 + dn20 + 0R01 + 03)*(8R - 0) + H*(dc - 6) (7) 

where R and H are constants related to the effects of radiation 
ind convection at the surface, respectively. The surface with 
temperature 0 is exposed to radiation (temperature 6R) and con
vection (temperature Be). 

The inclusion of radiation-convection boundary condition, 
equation (7), leads to the following form of the element thermal-
force matrix: 

{«,„) = - y A* ([0«(« - At) + 0>(l - &)0(t) 

+ 0Kt - At)0\t) + 0(1 - At)03(t) + d^t))) 

; 
J s,. 

X I {dm)T{d,n){d,n)
T{dm){dmydSm 

H,n 
At([6(t - At) + 6(t)]) (,dm)^dm)dSt 

+ s. 'Ri*R,n(d,n)TdSm + 
s„ J s, 

+ J, 

j 
•J s,,. 

f 6c*H. 
J s,„ 

I Qimnj 

and 

Pm Pm 
V,n J S, 

M 

{F} = E (e» 
m = 1 

{dm)TdSm 

(l,n)
TdSm (8) 

(9) 

From equations (8) and (9) one knows that the thermal-force 
vector \Fj cannot be separated into two vectors that include the 
information at times t — At and t, respectively, since 0(t — At) 
and 0(t) are coupled in the first term of equation (8). 

Substituting equations (8) and (9) into equation (5) results in 
Hie following equation for the finite-element system: 

A( 
'lA]({t + 

+ I [C] + ~ IK) + ^ [H] [C] 

\-M0t}) 

At 
IK] 

'•vhoii 

At 
+ T [ H ] 

M 

?n= 1 

At 
{Ot-u} + T [A]{B*t-M} + {G(t)} (10) 

[H] 
M 

E [ff« 
m= 1 

M 
{G(t)} = J2 f G » » ! (11) 

m= 1 

Joufnal of Heat Transfer 

Each of the «i-subscripted matrices represents the result of the 
appropriate integration over the ??ith element, e.g. 

[Am] = / Rm{dmy{dm)(dm)T(dm)(dmydSm 

and 

\Gm (,)l " / , 

X, [Hn] = Hm(dm)T{dm)dSm (12) 

f dc*Hm Pm*Pm(bm)dVm + I 6 c* H m(dm)T dS m 

v,„ J ,s„, 
f* /» 111 

+ 0R**Rm(dm)TdSm + QMbmydSm 

Jsm J Sm 

I t should be emphasized that equation (10) represents a set of 
nonlinear algebraic equations of nodal-point temperatures for the 
complete finite-element system which can be solved by the 
direct iteration technique used in [5]. This method has been 
proved [6] to be absolutely convergent and the order of con
vergence is quadratic. The detailed discussion of the con
vergence, the speed of convergence, and truncation errors of this 
method will not be presented here; however, they can be found 
in [6]. In the subsequent transient-temperature problems, if the 
initial temperature distribution is assumed to be an estimated 
solution, then a satisfactory solution can be obtained with only 
two or three iterations for each time increment. If the maximum 
difference of solutions for two successive iterations is less than a 
specified limit e, say ±10~ 6 , the solution is considered to be 
suitable for all calculations in the following examples. 

Examples 

To illustrate the solution technique on a transient heat-conduc
tion problem of a solid subjected to nonlinear boundary condi
tions, a plane slab of thickness 2L (0 < x < 2L) through which 
heat is exchanged with a radiating and convecting environment is 
considered. The initial temperature of the slab is assumed to be 
uniform with value 0O. The radiation-convection boundary 
conditions are assumed to be 

Ow*') + B(0O *) at 

n = o n = 2 (13) 

The solution for 0*(rj, T ) depends upon the four pai'ameters Y, 
B, OR*, and 0c*- In this investigation the decision was made to 
consider 8R* = 8c* = 0 and to vary Y and B. Hence the re
sults obtained by the present approach can be compared with 
those of the .solution by Haji-Sheikh and Sparrow [7] based on the 
same input data. 

The finite-element solution was obtained by use of a step-by-
stej) technique. For each time increment A T , an implicit itera
tion process [5] was used to solve equations (10). A variable 
time-step size was chosen. A value of AT = 0.001 Was chosen 
initially. After r = 0.02, AT was increased to 0.0025. After 
T = 0.2, A T was increased to 0.01. After T = 0.4, A t was 
increased to 0.025. After r = 1.0, A T was increased to 0.05. 
The magnitude of AT was increased with time since the change in 
the surface temperature decreases with an increase in time. The 
temperature history at the surface and at the center plane of the 
slab obtained by the present method arid by the probability 
method is provided in Fig. 1 for B = 1.0 and Y = 0, 1, and 4.0. 
Excellent agreement has been found, as shown in Fig. 1, between 
the present results and those of Haji-Sheikh and Sparrow ob
tained by use of the Monte Carlo method. 

A comparison of the surface temperature predicted by use of 
the Richardson and Shum approach [3] and by use of the present 
method for a slab (B = 1.0, Y = 1.0) with total elapsed time of 
one unit exposed to radiation and convection cooling is also 
shown in Fig. 1 by the dash-and-dot line and by the dash line, 
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Fig. 1 Transient temperature results for a slab with radiation-convection boundary conditions 

respectively. The time-increment sequence (in tha t order) ATI 
= 0.002, AT 2 = 0.010, Ar3 = 0.088, AT 4 = 0.10, Ar6 = 0.20, 

7 

ATB = 0.30, and AT 7 = 0.40 (note that X) A T ; = 1.0) was used 

to compute temperature distribution so that the total elapsed di-
mensionless time equals one unit. The difference between the 
solutions presented by the open and solid upright triangles is due 
to different time-increment sizes used to obtain solutions. The 
solution presented by open upright triangles can be considered 
closer to the exact solution since smaller time increments, as indi
cated, were used. However, the difference of those two solu
tions is insignificant for practical engineering problems. This 
points out tha t with the present method a satisfactory solution 
can be predicated even with large time increments. Since no 
iterative correction procedure is involved for the computing of 
temperatures in the Richardson and Shum method, the larger 
error introduced by use of their method may be due to the calcu
lation of the contribution of radiation and convection at the sur
face based entirely on the surface temperature at one time step 
earlier (e.g., at AT = 0.012) rather than on consideration of the 
variation of surface temperatures between each time step (e.g., 
between time interval AT = [0.012,0.1]). 

An alternative explicit successive-substitution iteration tech
nique [8] was also used to obtain the transient temperature dis
tribution of the plane slab subjected to radiation-convection 
boundary conditions as mentioned previously. With this ap
proach, the new computed surface temperature was used to esti
mate the contribution of radiation and convection on the surface 
of the slab. The detail discussion of this explicit iteration tech
nique will not be presented here; however, it can be found in [8]. 
For comparison of the results obtained by use of both the explicit 
and the implicit iteration techniques presented in this investiga
tion, the spatial coordinates of all nodal points were assigned as 
the same. Hence the size of banded matrices formulated by use 
of both methods is the same and so with almost the same required 
core storage space. Various time-step sizes are considered. 
Both the explicit and the implicit solutions are considered to be 
satisfactory if the maximum difference of results for two successive 
iterations is less than e = ±10~ 4 . A comparison of the number 
of iterations required to obtain a satisfactory solution by use of 
explicit and implicit methods for various time-step sizes and 
various P and B is given in Table L 

From Table 1 the*following conclusions are obtained: 
1 The speed of convergence of the explicit iteration technique 

not only strongly depends upon the size of time increment AT but 
also strongly depends upon the values of T and B. However, the 
size of time increment AT and the values of T and B do not much 
affect the speed of convergence of the implicit iteration technique. 

2 The speed of convergence of the implicit iteration tech-
nique is much faster than the speed of convergence of the explicit 
iteration technique. The implicit iteration technique used here 
has been proved [6] to be quadratically convergent; in other 
words, the number of correct decimal places is doubled at each 
iteration. 

3 The implicit iteration technique used in this investigation 
is always convergent [6] even with large time-increment size (e.g., 
AT = 0.5). Of course, if large time increments are used, the re
sult will not converge to the exact solution. 

Conclusions 

With the use of iteration techniques, the finite-element method 
is extended to solid heat conduction with nonlinear heat-flux (ra
diation-convection) boundary conditions. The speed of con
vergence of the implicit method is faster than that of the explicit_ 
method. This may be due to the fact tha t the implicit methoi 
requires iteration of temperatures not only at the surfaces but ah 
at all nodal points in the solid. The disadvantage of applying 
the implicit iteration method is that it is more difficult In p 
gram than the explicit iteration method; however, an expencin"! 
programmer can readily reduce the complexity of program) i inir 
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Table 1 Comparison of the number of iterations required in 
puting of temperatures of a plane slab at the end of the first time 
starting at r — 0 

r = 1.0, B = 0.2 r = 2.0, B = 0.2 V = 4.0, 

AT Explicit Implicit Explicit Implicit Explicit 
method method method method method 

0.002 
0.005 
0.01 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 

5 
7 
9 

20 
33 
50* 
50* 
50* 
50* 

13 
20 
50* 
50* 
50* 
50* 
50* 
50* 

4 
4 
5 
5 
5 
5 
5 
5 

16 
43 
50* 
50* 
50* 
50* 
50* 
50* 
50* 

the com-
inciomerl 

B - "•-

Imi 'V 
rn'':i',,: 

I 
1 
1 

* After SO iterations, the convergence criterion (c = ± 1 0 " " 
not reached. 
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Conductive Shape Factors for a Circular Cylinder 
Centered in a Rectangular Slab Having One and 
Two Adiabatic Surfaces 

E. I. GRIGGS,1 D. R. PITTS,2 and A. B. GOYAL3 

Introduction * 

MANY practical heat-transfer problems pertain to heat con
duction between two isothermal surfaces through an intervening 
medium posing a variable cross-sectional area to the heat flow. 
For such cases, the influence of variable geometry is commonly 
included in a conductive shape factor defined by 

= SkAT (1) 

Many configurations have previously been investigated and 
typical shape factors are reported in [1-4] .4 

In this note, attention is directed to the case of a circular cylin
der centered in a rectangular slab, Fig. 1(a). For this arrange
ment with both the inner and outer surfaces at constant but 
different temperatures, an expression for the shape factor has 
been obtained by means of conformal mapping and reported by 
Balcerzak and Raynor [1] as 

S = 
2TT 

7IT 

(2) 

where K is a function of the ratio b/a. Two variations of this 
arrangement which are considered in this note include the case 
tvhere one side of the rectangle is adiabatic and the case where 
two opposing sides are adiabatic. Shape factors for the first 
variation apply directly to a symmetrical half of the arrange
ment shown in Fig. 1(6), while those for the second variation 
apply directly to a symmetrical section of the arrangement shown 
in Kg. 1(c). Results for the two variations may be useful in 
Btimating heat-transfer rates for situations such as that shown 
to Fig. 1(d), provided some caution is exercised since the geo
metrical dividing line between the two cylinders at an end is not a 
precise line of thermal symmetry. 
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Fig. 1 Configurations of a homogeneous rectangular slab containing 
heated or cooled tubes 
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Fig. 2 Conductive shape factors for a rectangular section containing a 
heated or cooled tube—two sides isothermal and two sides adiabatic 

Computations and Results 

A symmetrical section of Fig. 1(a) was isolated for numerical 
study. In the first variation considered with one wall adiabatic 
and the other three isothermal, this amounted to a half-section. 
For the second variation with two opposing walls isothermal 
and the other two adiabatic, this corresponded to a quarter-
section. In each case, the selected section was subdivided into 
a square-grid network. 

Appropriate finite-difference equations relating nodal-point 
temperatures to those of adjacent points were formulated as 
presented in the conduction literature. For those nodal points 
adjacent to the interior curved boundary, use was made of frac
tional nodal spacings in accordance with the technique outlined 
in [5]. A suitably small grid spacing, using from 288 to 2560 
grid points for the symmetrical section analyzed, was chosen to 
insure accuracy of the numerical solution for each configuration. 
Computations were carried out using an I B M 360/40 digital 
computer. 

The integrity of the numerical technique was ascertained by 
computing shape factors for the range of ratios a/r and b/a of 
this study corresponding to the case of all four surfaces isother
mal. These numerical predictions agreed in each case within 2 
percent of the exact solution given by equation (2), and this is 
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Conductive Shape Factors for a Circular Cylinder 
Centered in a Rectangular Slab Having One and 
Two Adiabatic Surfaces 

E. I. GRIGGS,1 D. R. PITTS,2 and A. B. GOYAL3 

Introduction * 

MANY practical heat-transfer problems pertain to heat con
duction between two isothermal surfaces through an intervening 
medium posing a variable cross-sectional area to the heat flow. 
For such cases, the influence of variable geometry is commonly 
included in a conductive shape factor defined by 

= SkAT (1) 

Many configurations have previously been investigated and 
typical shape factors are reported in [1-4] .4 

In this note, attention is directed to the case of a circular cylin
der centered in a rectangular slab, Fig. 1(a). For this arrange
ment with both the inner and outer surfaces at constant but 
different temperatures, an expression for the shape factor has 
been obtained by means of conformal mapping and reported by 
Balcerzak and Raynor [1] as 

S = 
2TT 

7IT 

(2) 

where K is a function of the ratio b/a. Two variations of this 
arrangement which are considered in this note include the case 
tvhere one side of the rectangle is adiabatic and the case where 
two opposing sides are adiabatic. Shape factors for the first 
variation apply directly to a symmetrical half of the arrange
ment shown in Fig. 1(6), while those for the second variation 
apply directly to a symmetrical section of the arrangement shown 
in Kg. 1(c). Results for the two variations may be useful in 
Btimating heat-transfer rates for situations such as that shown 
to Fig. 1(d), provided some caution is exercised since the geo
metrical dividing line between the two cylinders at an end is not a 
precise line of thermal symmetry. 
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Fig. 1 Configurations of a homogeneous rectangular slab containing 
heated or cooled tubes 

eilt Transfer Division February 29, 1972. 

Fig. 2 Conductive shape factors for a rectangular section containing a 
heated or cooled tube—two sides isothermal and two sides adiabatic 

Computations and Results 

A symmetrical section of Fig. 1(a) was isolated for numerical 
study. In the first variation considered with one wall adiabatic 
and the other three isothermal, this amounted to a half-section. 
For the second variation with two opposing walls isothermal 
and the other two adiabatic, this corresponded to a quarter-
section. In each case, the selected section was subdivided into 
a square-grid network. 

Appropriate finite-difference equations relating nodal-point 
temperatures to those of adjacent points were formulated as 
presented in the conduction literature. For those nodal points 
adjacent to the interior curved boundary, use was made of frac
tional nodal spacings in accordance with the technique outlined 
in [5]. A suitably small grid spacing, using from 288 to 2560 
grid points for the symmetrical section analyzed, was chosen to 
insure accuracy of the numerical solution for each configuration. 
Computations were carried out using an I B M 360/40 digital 
computer. 

The integrity of the numerical technique was ascertained by 
computing shape factors for the range of ratios a/r and b/a of 
this study corresponding to the case of all four surfaces isother
mal. These numerical predictions agreed in each case within 2 
percent of the exact solution given by equation (2), and this is 
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Fig. 3 Conductive shape factors for a rectangular section containing a 
heated or cooled tube—three sides isothermal and one side adiabatic 

considered to be indicative of the accuracy of the results reported 
herein. The results are summarized in Figs. 2 and 3, where the 
indicated "points" in these figures correspond to specific numeri
cal computations. 
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in Rectangles with Broken Boundary Conditions1 
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Introduction and Background 

ANALYTIC formulas for steady temperatures in rectangles with 
broken boundary conditions are obtained. These results supple
ment standard formulas for corresponding continuous boundary-
value problems, e.g., [1, pp. 166, 435; 2, pp. 101, 182],4 In di-
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mensionless coordinates (£, t)) the rectangle is 0 < £ < 1 :,|.,| „ 
< ? ? < / ? (this includes the semi-infinite rectangle for n|,;,.j 
/3 = <»). The temperature T satisfies Laplace's equatio". :..„) 
the boundary conditions 

\huT - ku ~I = Mi) 0 < £ < y ,-,. 

\hnT - kn ^ 1 = /.*(£) 7 < £ < 1 

r <>T1 f a r l 
IhiT + ki—l = 0 IhT -fa — = 0 
L d£_h = i L d£J« = o 

0 < l j < r * .;,, 

where the constants ha/k are Biot numbers (o being a cl.:ii>. 
teristic length) [2, p. 12], 7 is a point between 0 and 1, and i|:.. 
functions / are given. If /3 = <», then T is bounded as t] - • .: 
whereas if (3 < » , then 

r Mn = /.(£) 0 < £ < 1 :-l 

DP 

• 1 1 . i 

liid 

i'i„-

Note tha t k = 0 and h = 0 correspond, respectively, to bou:n 
conditions of the first and second kind [2, p. 7]. For brevi 1 • 
exclude the case in which both hi and ht are zero. This ca-
be solved by slightly modifying the answers given here, cf. 11 
18, 101]. 

The difficulty in finding T is due entirely to conditions (! • 
(2), the "broken" or "discontinuous" boundary conditions, •'. 
correspond to a discontinuity in the differential boundary ••; 
tor, i.e., the left-hand sides of (1) and (2), at £ = 7. 'W 
continuity properties of the functions / are not important. 

We separate variables to find a solution in ij-eigenfun'-iim 
satisfying all the boundary conditions except along the I.:.-
The solution is fitted to the base boundary conditions by 1 :•• ii-
tegrated least-squares criterion [3, 4]. The procedure we i.«- '< 
related to the method of dual trigonometric series [5, 6] • fi-
used in continuum mechanics [7] and electrostatics [6, 8]. I: i 
easier to apply than dual series since it involves no manipui.• • •-•--
of special functions or use of integral equations, and for In1.-' 
transfer has the advantage of applying to problems with boin-l-i.. 
conditions of the third kind. Thus the present techniqu ''u-
bines for the rectangle the principal advantage of dual -••ii| 

[6]—a neat eigenfunction solution—with the main advant1: *•-'•• 
integrated least-squares boundary fitting [3, 4]—the ne^'-il:11. 
to handle all linear boundary conditions and computation, il -N:. 
plicity. 

A related problem is finding the temperature U which g-i 1 i-!:« 
equations ( l ) -(4) modified as follows: the right-hand si'l>-' 
(1), (2), and (4) are set equal to zero; the right-hand sides "I '!' 
equations in (3) are replaced by given functions / J ( I J ) ant! .1 •• •? 
In finding T there is a discontinuity in the differential bouii'l:;:-
operator along an edge with a nonhomogeneous boundary ',,:li 

dition, whereas in finding U the discontinuity is on an edge •"•i.li 
homogeneous boundary condition. One uses i;-eigenfu]!,•',•", 

for finding T and ?)-eigenfunctions for finding U. Since I ••'"' 
do not enter either problem symmetrically, a very dil ',|1"' 
method was used [9, 10] to find V than is used here to "'' '' 
This stands in sharp contrast to the case of continuous boii'i'l"'-
operators for which, since £ and t\ enter the problem syrt-:"|'" 
cally, solutions involving £-eigenfunctions are obtained from 'l'"" 
involving T/-eigenfunctions by simply interchanging £ •'ll|il 

U , 2 ] . 

Application of the Method 

Separating variables in the usual fashion leads to the fo .•• Ab
solution for the semi-infinite rectangle: 

-*»u 
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Fig. 3 Conductive shape factors for a rectangular section containing a 
heated or cooled tube—three sides isothermal and one side adiabatic 

considered to be indicative of the accuracy of the results reported 
herein. The results are summarized in Figs. 2 and 3, where the 
indicated "points" in these figures correspond to specific numeri
cal computations. 
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method was used [9, 10] to find V than is used here to "'' '' 
This stands in sharp contrast to the case of continuous boii'i'l"'-
operators for which, since £ and t\ enter the problem syrt-:"|'" 
cally, solutions involving £-eigenfunctions are obtained from 'l'"" 
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ŝ  
g 

fl^ 

;> 
^ •life 

.40 

\\\
\\\

\\\
\\\

\\\
\\V

\\\
\\\

\\\
 

1 

1 
_̂_ 

• — ^ 

: -- ~^~^-

W ^ \ / 

^ ^ 8 0 y / 

^ • 1 0 

1 / 1 1 

T = l 0 0 ( l - { ! ) 

'y////l / / / / 
/ / / / 
/ / /1 
60 / / / 

/ / Z 5 0 / 

/ / 

1 \ \ \ ^ 
\ \ ^ 

1 \ \ 
\ \ 
\ N 
\ 
30 

40 1 

/ " 

( 1 , 1 ) 

3T 

d( 

r=T .4 

a , ' 

pjg, I Isotherms are displayed for an illustrative example in which T 
satisfies the boundary conditions shown along the sides of the square; 
|he temperature increment between isotherms is 5; the break in boundary 
conditions along the base occurs at 7 — 3 ; to the left of 7 the base is 
insulated, while to the right convective heat transfer occurs by Newtonian 
cooling * 

where Xn is the rath positive root of 

(hkiX2 —' hihi) tan X = \QiJti + hjti) (6) 

and 

4>n = arctan {kikn/lu) (7) 

This solution satisfies (3). To satisfy conditions (1) and (2) the 
{an} are chosen to minimize the integrated least-squares deviation 
along the base, i.e., 

-r dT 
hi —- + hnT - / u I ) df 

+ 

] 
X'([* 12 — + hnT - fn\ ) df U 

To find the minimum we set M/da„ = 0 for n = 1, 2, . . ., and ob
tain (after some straightforward algebra) the equations for {an} 

where 

FP = (X 

Y, AP»an = Fp V = 1, 2, . . ., (8) 
71 = 1 

Pi 

pkn + fen) I /11(f) sin (A„£ + 4>p)d% 
Jo 

+ (Xpfcis + hn) I /12(f) sin (Xpf + 4>p)dZ (9) 

For conveniently expressing Apn we introduce the notation Xj,^ 
*= As ± X„, (ppn^ = 4>p ± <£n, and 

s sin {\pn~y + 4>pn") — sin <£„„~ 
yjw = 

ZApn 

"tp = — 
2 

sin (X,,n+T + </>i)n+) — sin (/)p„
 + 

9\ + 

sin (2XP7 + 2(f>v) — sin 2<£j, 

p ^ n 

_ sin (X;,„+ 4- 0p n
+ ) — sin (Xp n

+7 + 0im+) 

2Xpn+ 

i f sin (2X„ + 2d>p) - sin (2X„7 + 2<t>p)\ 
e„=~2 ( 1 - 7 ^ ) 

In this notation 

Apn = (Xp&n + hn){\nkn + hu)8pn 

+ (Xpfcis + /»12)(X„/Cl2 + hn)fpn (10) 

For the finite rectangle, T is found in exactly the same way. 
The answer here is 

T(£, v) = X) {«!•[ - sinh \ n y + y„ cosh X„??] 
n = l 

+ <?n cosh X„ij} sin (X„f + </>„) (11) 

where ,u„ = (h3 tanh XniS + feX„)/(/i3 + feX„ tanh Xn|8), 

G„ 
J o 

4A„ sech X„/3 /3(f) sin (X„f + <£„)<*£ 

= S m (Xgn + 4>P" ) — SJn (Ajm 7 + <ftim ) 

2Xj,n~ 

(fea + feX„ tanh X„/3)(2X„ - sin (2X„ + 2<£„) + sin 2<j>„) 

and {a»j is the solution to (8) with 

Fp = (An/Xj, + fciiXy) I /11(f) sin (X„f + 0„)df 
Jo 

+ (fei2^P + ^i2Xp) I /12(f) sin (A„f + <^„)df 

— Y Gnlhu(hnfxp + kn\p)Sp,, + hnQiniXp + A;i2Xy)e3,n] (12) 

n = l 

Apn = (/»n/Uj, + kn\p){hniXn + ka\n)dPn 

+ (hu/Xp + kn\„)(hizHn + kii\n)ePn (13) 
The nth-order approximation to T is found by truncating the 

series in (5), (8), and (11) at the n th term. For most applica
tions, n < 20 suffices. Computations were performed on a CDC 
6400 with a program written in FORTRAN IV. Our program 
generates on command isotherm curves which are automatically 
displayed on a cathode-ray tube and recorded on 35-mm film. 
Figure 1 was produced this way with n = 20. Little change was 
seen in these curves in going from the 20th- to the lOOth-order 
approximation. We have obtained similar results for other ex
amples. 

In summary, integrated least-squares boundary fitting is an 
analytically simple and numerically effective procedure for ex
tending separation-of-variables formulas to steady temperatures 
in rectangles with discontinuous boundary conditions. 
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Relevant Equations 
The equation for heat transfer to a laminarly flowing fluid \u 

a tube can be written [5] 

1 d / bT\ b*T _ 

r br \ br / bz2 p -r W r— 
k 

bT 

bz 
fl) 

where ur is the parabolic velocity profile, 
ary conditions are given below: 

Various sets of bu-.u,,). 

A Numerical Solution of the Graetz Problem 
with Axial Conduction Included 
F. H. VERHOFF1 and D. P. FISHERY 

Nomenclature 

k 
K 

Nu 
Pe 
qw 

r 
R 
T 
n 
u 

Mr 

Z 

V 

specific heat 
thermal conductivity 
constant of axial transformation 
Nusselt number, 2Rqvl/[k{Tvl - Tb)] 
Peclet number, 2pRuCp/k 
heat flux at wall 
radial dimension 
pipe radius 
temperature 
bulk temperature 
mean velocity 
velocity 
axial dimension 
dimensionless axial dimension 
dimensionless temperature 
dimensionless radial dimension 
density 

Introduction 

T H E familiar Graetz problem of laminar-flow heat transfer in 
a pipe has traditionally been solved by neglecting the effect 
of axial heat conduction because the mathematical prob
lem is simplified from an elliptic equation with boundary condi
tions at infinity to a parabolic equation with this assumption. 
However, for low Peclet numbers the effect of conduction is 
significant; Hennecke [ l ] 3 has presented numerical solutions 
with axial conduction included for constant-wall-temperature 
and uniform-heat-flux cases. By trial and error he approxi
mated the boundary conditions at infinity. Hsu [2] has de
veloped an exact solution to the uniform-wall-heat-flux case by a 
separation-of-variables technique. Petukhov and Tsvetkov [3] 
solved the constant-heat-flux case by using an approximate tech
nique tha t Hsu found to contain considerable error. Jones [4] 
recently presented an analytical solution for the constant-wall-
temperature case. 

The solutions of these authors are complicated by the use of 
boundary conditions at infinity. This work presents a numerical 
solution that avoids the infinite boundary conditions. Constant-
wall-temperature, uniform-heat-flux, and insulated constant-
wall-temperature cases are all investigated; however, detailed 
results are given only for the case of flow from an insulated pipe 
into a constant-temperature pipe since these results (possibly 
more useful) are not as yet to be found in the literature. 

132 / FEBRUARY 1 9 7 3 

Uniform 
heat flux 

Constant 
wall 

tempera
ture 

Insulated 
constant 
tempera

ture 

Z = + ' 

= 0 

T = T„ 

bT 

1 Assistant Professor, Department of Chemical Engineering, 
University of Notre Dame, Notre Dame, Ind. 

2 First Lieutenant, U. S. Air Force. 
3 Numbers in brackets designate References at end of technical 

brief. 
Contributed by the Heat Transfer Division of T H E AMERICAN 

SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the 
Heat Transfer Division March 6, 1972. 

_ 2qw 

bz pCpuR 

br 

r = R, z < 0 

r = R, z > 0 

bT 

br 
= 0 

bT = q*, 

br k 

T = To 

T = Ti 

bT 
— = 0 
br 

T = To 

T = Ti 

T = 2 \ 

^ = 0 
br 

^ = 0 
br 

T = 2 \ 

'») 

The infinite boundary conditions can be eliminated by irmkiu 
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Relevant Equations 
The equation for heat transfer to a laminarly flowing fluid \u 

a tube can be written [5] 
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where ur is the parabolic velocity profile, 
ary conditions are given below: 
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A Numerical Solution of the Graetz Problem 
with Axial Conduction Included 
F. H. VERHOFF1 and D. P. FISHERY 

Nomenclature 

k 
K 

Nu 
Pe 
qw 

r 
R 
T 
n 
u 

Mr 

Z 

V 

specific heat 
thermal conductivity 
constant of axial transformation 
Nusselt number, 2Rqvl/[k{Tvl - Tb)] 
Peclet number, 2pRuCp/k 
heat flux at wall 
radial dimension 
pipe radius 
temperature 
bulk temperature 
mean velocity 
velocity 
axial dimension 
dimensionless axial dimension 
dimensionless temperature 
dimensionless radial dimension 
density 

Introduction 

T H E familiar Graetz problem of laminar-flow heat transfer in 
a pipe has traditionally been solved by neglecting the effect 
of axial heat conduction because the mathematical prob
lem is simplified from an elliptic equation with boundary condi
tions at infinity to a parabolic equation with this assumption. 
However, for low Peclet numbers the effect of conduction is 
significant; Hennecke [ l ] 3 has presented numerical solutions 
with axial conduction included for constant-wall-temperature 
and uniform-heat-flux cases. By trial and error he approxi
mated the boundary conditions at infinity. Hsu [2] has de
veloped an exact solution to the uniform-wall-heat-flux case by a 
separation-of-variables technique. Petukhov and Tsvetkov [3] 
solved the constant-heat-flux case by using an approximate tech
nique tha t Hsu found to contain considerable error. Jones [4] 
recently presented an analytical solution for the constant-wall-
temperature case. 

The solutions of these authors are complicated by the use of 
boundary conditions at infinity. This work presents a numerical 
solution that avoids the infinite boundary conditions. Constant-
wall-temperature, uniform-heat-flux, and insulated constant-
wall-temperature cases are all investigated; however, detailed 
results are given only for the case of flow from an insulated pipe 
into a constant-temperature pipe since these results (possibly 
more useful) are not as yet to be found in the literature. 
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Fig, 1 Radial temperature profiles for various axial distances; insulated 
constant-temperature case (——) and constant-temperature case 
(—t—•—) both with Peclet number equal to 5 
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Fig. 2 Bulk temperature as a function of axial distance for constant-
temperature and insulated constant-temperature cases 

using the techniques given by Carnahan et al. [6]. The first 
derivatives were approximated with the central difference opera
tor, and the second derivative also was approximated with an 
accuracy to the second order. The boimdary condition a t the 
center of the tube was handled in the usual way (see [6]). Other 
boundary conditions are straightforward. 

The computer was programmed to solve this set of equations 
by the Gauss-Seidel iteration technique. The radial and axial 
directions were divided into grids with from 10 to 40 divisions. 
A good approximation to the equations was achieved for 10 radial 
divisions and 30 axial divisions. The transformation constant 
-Kwas varied between 0.5 to 2.0; a satisfactory value was 1.0. 
Convergence was quite rapid and was terminated when the di-
tnensionless temperature values changed less than 0.01 percent 
in an iteration. 

Results 

The constant-wall-temperature case was run for various values 
of the Peclet number; the radial temperature profiles with axial 
distance as a parameter were compared with those of Hennecke 
HI and rather close agreement was observed. The Nusselt 
"umbers obtained were also compared with those of Hennecke; 
Sood comparison was obtained for the downstream section but 
the results for the upstream numbers were slightly higher than 
"ose of Hennecke. The uniform-heat-fiux case was also solved, 

ll,ld the results compared very well with those of Hennecke [1] 
a i " lHsu[2] . 
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Fig. 3 Nusselt number as a function of downstream axial distance for 
insulated constant-temperature case 
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Fig. 4 Nusselt number as a function of upstream axial distance for 
insulated constant-temperature case 

Figure 1 is a plot of radial temperature profile with axial dis
tance as a parameter for the case of insulated upstream section 
and constant downstream temperature with the Peclet number 
equal to 5. The temperature profiles in the upstream section 
differ markedly from the constant-temperature case and this 
difference extends into the downstream section of the tube. The 
bulk temperatures as a function of downstream distance for the 
two cases and for different Peclet numbers are plotted in Fig. 2. 
The results of this study and those of Hennecke are essentially 
identical for the constant-temperature case, but these results 
differ significantly from those of the insulated case as can be seen 
from the graph. 

Local Nusselt numbers for the insulated constant-temperature 
case were calculated from the defining equation. The Nusselt-
number results as a function of axial distance for the insulated 
constant-temperature case are shown in Figs. 3 and 4 for various 
Peclet numbers. The entrance-region Nusselt numbers for this 
case are much lower than for the constant-temperature case. 
Thus the extra heat transfer expected in the entrance region 
would be much less for the insulated upstream case in comparison 
with the constant-temperature case. 

Conclusions 

The inverse-tangent transformation permits the conversion of 
the infinite boundaries for the Graetz problem into finite bounda
ries. The resulting equations are easily solved by finite-difference 
techniques. Results for the constant-temperature and uniform-
heat-fiux boundary conditions compared well with the results of 
Hennecke [1] and Hsu [2]. The insulated upstream and 
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constant-temperature downstream results are presented and 
indicate the bulk temperature and Nusselt numbers differ sig
nificantly from those of the constant-temperature case. 
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Variable-Property Turbulent Flow in a Horizontal 
Smooth Tube during Uniform Heating and Constant 
Surface-Temperature Cooling 

J. ZUCCHETTO1 and R. S. THORSEN2 

DTJBING the investigation of friction and heat-transfer behavior 
in turbulent swirl flow of air with both heating and cooling [ l ] , 3 

it was evident that existing correlations for turbulent convection 
in circular tubes which adequately accounted for temperature-
dependent properties were not available over the entire range of 
temperatures investigated. This was particularly true for the 
case of cooling, i.e., the case of a hot gas and a cold surface. I t 
therefore became necessary to independently establish Nusselt-
number correlations for both heating and cooling to serve as a 
base line for comparison with the twisted-strip-induced swirl-flow 
results. 

The results for uniform heating are briefly repeated here since 
they are somewhat obscured by the emphasis on swirl flow in [1] 
and because some of the equipment used in the present cooling 
study, e.g., orifice flowmeter and reverse-flow adiabatic mixing 
chambers, were calibrated and used in the heating experiments. 
The constant-property Nusselt-number correlation, denoted by 
subscript 0 and obtained from low-heat-flux data, was 

Nu0 = 0.021 Re»-8Pr°-4 (heating, uniform heat flux) (1) 

Equation (1) is in agreement with results reported by McEligot 
et al. [2] and Kays [3]. 

At large heat fluxes, and therefore large differences between the 
local surface temperature Ts and bulk temperature TB, the effect 
of temperature-dependent properties is important and the 
Nusselt number can be correlated according to 

Nu = NV0(T,/TB)-° (2) 

In equation (2) the temperatures are measured on an absolute 
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scale. In [1] values of T,/TB ranging from 1 to 1.9 were r.,:i_ 
sidered and a least-squares error fit of the data indicated a v:>h,-i 
of a = 0.32. As reported by both Kays and Jackson [4 . ;il(, 
analytic results of Deissler and Eian [5] correspond to a = u.:;i. 
For the experimental Reynolds-number range of 18,000 to 21.1.nr.'i 
the results reported in [1] are therefore seen to be in agree:.ini 
with [5]. 

For the cooling experiments reported in [1], two factors- i-i.n-
tribute to the uncertainty of the no-swirl Nusselt-number f i l 
iation reported. First the range of TJTB was not very yp.-i: 
and second the test section L/D ratio was only 36. Thif wi-. 
adequate for the swirl-flow experiments but the question uf 
thermal-entrance-length effects was left unresolved for the '••:••• 
of no-swirl cooling. These two uncertainties motivated the ,• • n.ly 
reported herein. The horizontal brass test section used is sh><iHi 
schematically in Fig. 1. Copper-constantan thermoco'ijil' 
(30-gage) were used to measure the water temperature and -i;r-
face temperature of the test section. The air inlet and exit I•••]"; 
temperatures were measured in reverse-flow adiabatic irii\i'i^ 
chambers. The air flow rate was measured using an orifice I'mr-
meter and was heated to temperatures up to 700 deg F pn-i .-! 
entering the test section. The maximum Mach number 'V 
countered was 0.34 but was generally much less. Further di-i:iil. 
of the experimental facility are reported in [6]. 

Results 
The test-section surface temperature was measured with n:.:ir 

copper-constantan thermocouples attached at various axial :iinl 
circumferential positions on the tube. For the entire ran;:'- "f 
experiments the surface temperature Ts varied from 39 to 6- 'K';.' 
F depending on water-supply conditions. However, in no <••'-' 
was there a temperature variation of more than 4 deg F bel '.'• •••! n 
thermocouples, confirming that a uniform-temperature bour'l.m 
condition was achieved. The total heat-transfer rate from • 1»" 
flowing air, Q, was calculated from the measured mass &ov f.ii" 
and bulk temperature change from inlet to exit with the cons-1-"1-

pressure specific heat evaluated at the arithmetic-mean 1 ••U— 
temperature. In order to maintain isothermal wall condi'i""' 
the water flow rate was maximized. This resulted in very .-:n:'-" 
changes in the bulk temperature of the water and preclude'i .\'< 
accurate energy balance. However, the flowmeter had '••,|'1, 

separately calibrated as had been the mixing chambers durinn 'I'1 

heating runs reported in [1]. There a heat balance was pOE-i '>'' 
and Q calculated as described above was generally found •" '"' 
well within 4 percent of the value predicted from the 'n"1' 
balance. 

By removing the exit mixing chamber a traversing the"-1"" 
couple could be attached to the end of the test sections. Ver>-' '•' 
and horizontal traverses were made and they revealed corr>)>:,':' 
symmetry with respect to the tube axis. No circumferrni'" 
asymmetry due to superimposed free convection was detect •»"i 

[6]. The heat-transfer coefficient was therefore OP'™11"' '" 
according to 
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constant-temperature downstream results are presented and 
indicate the bulk temperature and Nusselt numbers differ sig
nificantly from those of the constant-temperature case. 
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pin. 2 [loot-transfer results for uniform surface-temperature cooling" 
correction for property variations 

h = Q 

A(AT)LM 
(3) 

where (AJT)LM is the logarithmic-mean temperature difference 
between the air and the tube surface. The area A in equation (3) 
was computed on the basis of the inside diameter of the test 
.section and an adjusted length. The adjusted length consists 
of the test-section length exposed to the cooling water, i.e., 97.7 
in. us shown in Fig. 1, plus a correction to account for cooling that 
takes place between the upstream and downstream mixing 
chambers and the end of the test-section flanges. The physical 
length involved was 4 in. at each end. Since these 4-in. end 
"fins" were not isothermal, an effectiveness had to be determined 
to compute the equivalent isothermal lengths to be added to the 
97.7-in. water-cooled length. Thus 

A = TVD{L + i]iLi + i)eLe) (4) 

In equation (4), D is the test-section inside diameter, L is the 
water-cooled length (97.7 in.), Li and Le are the lengths of the 
lulling joining the water-cooled section to the inlet and exit mix
ing chambers respectively, and 17,- and r\e are the effectivenesses 
n[ those lengths evaluated using the insulated end condition. 
(This was consistent with the nature of the connection between 
the brass tube and mixing chambers and with measured tem
peratures along these "fins.") Since the effectivenesses in 
equation (4) depend on h, an iterative scheme was required to 
compute h from equations (3) and (4). Details of the data re
duction are described in [6]. 

The constant-property diametral Nusselt-number correlation 
Wis obtained using the experimental data for TS/TB ~ 0.95. 
l'liese results are shown as circles in Fig. 2 and showed good 
agreement with the relation 

Niio = 0.0207 Pr°-33Re°-> (cooling, 1\ = constant) (5) 

In the presence of large fluid-to-surface temperature dif
ferences, account must be taken of property variations by the 
'elation 

N u = Nu, m (6) 

'"equation (6) the properties were evaluated at the average bulk 
tonperature, i.e., 

TB = Ts + (AT)LM (7) 

With decreasing values of T3/TB the experimental points were 
'^placed farther above the curve corresponding to equation (5). 
A multiple regression analysis was therefore performed to deter-
'""'« the coefficient in equation (7), the Reynolds-number ex-
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ponent, and 0. Using all of the data in Fig. 2 resulted in 

Nu = 0.0207 Pr0-33 Re0-8 [-j^-) (8) 

I t is noted that the value b = 0.17 is somewhat larger than the 
value of 0.1 recommended by Kays [3] but agrees with the ana
lytic results of Deissler and Eian [5] which correspond to a value 
of 6 = 0.19 for cooling [3]. 

Isothermal and diabatic friction factors were obtained and they 
compared well with the Karman-Nikuradse data for smooth 
tubes. No significant temperature-ratio effect could be found 
during cooling. This is in agreement with the recommendation 
of Kays [3]. 
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Film-Cooling Effectiveness in the Presence of a 
Backward-facing Step 

L. MATTHEWS and J. H. WHITELAW1 

Introduction 

T H E influence of slot geometry on the effectiveness of film cool
ing has been shown to be of considerable importance both for two-
and three-dimensional slot configurations and stems from the 
different flow conditions which a particular slot creates in the 
plane of its exit. The present paper is concerned with two-
dimensional slots and extends the work of [1-3]2 to include 
measurements of the influence of a backward-facing step, located 
as shown in Fig. 1, on the downstream impervious-wall effective
ness.3 Since the velocity ratio, density ratio, and lip-thickness-
to-slot-height ratio are known to have significant influence, and 
also to be of practical importance, they are regarded as param
eters. 

The range of parameters investigated is particularly relevant 
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pin. 2 [loot-transfer results for uniform surface-temperature cooling" 
correction for property variations 

h = Q 

A(AT)LM 
(3) 

where (AJT)LM is the logarithmic-mean temperature difference 
between the air and the tube surface. The area A in equation (3) 
was computed on the basis of the inside diameter of the test 
.section and an adjusted length. The adjusted length consists 
of the test-section length exposed to the cooling water, i.e., 97.7 
in. us shown in Fig. 1, plus a correction to account for cooling that 
takes place between the upstream and downstream mixing 
chambers and the end of the test-section flanges. The physical 
length involved was 4 in. at each end. Since these 4-in. end 
"fins" were not isothermal, an effectiveness had to be determined 
to compute the equivalent isothermal lengths to be added to the 
97.7-in. water-cooled length. Thus 

A = TVD{L + i]iLi + i)eLe) (4) 

In equation (4), D is the test-section inside diameter, L is the 
water-cooled length (97.7 in.), Li and Le are the lengths of the 
lulling joining the water-cooled section to the inlet and exit mix
ing chambers respectively, and 17,- and r\e are the effectivenesses 
n[ those lengths evaluated using the insulated end condition. 
(This was consistent with the nature of the connection between 
the brass tube and mixing chambers and with measured tem
peratures along these "fins.") Since the effectivenesses in 
equation (4) depend on h, an iterative scheme was required to 
compute h from equations (3) and (4). Details of the data re
duction are described in [6]. 

The constant-property diametral Nusselt-number correlation 
Wis obtained using the experimental data for TS/TB ~ 0.95. 
l'liese results are shown as circles in Fig. 2 and showed good 
agreement with the relation 

Niio = 0.0207 Pr°-33Re°-> (cooling, 1\ = constant) (5) 

In the presence of large fluid-to-surface temperature dif
ferences, account must be taken of property variations by the 
'elation 

N u = Nu, m (6) 

'"equation (6) the properties were evaluated at the average bulk 
tonperature, i.e., 

TB = Ts + (AT)LM (7) 

With decreasing values of T3/TB the experimental points were 
'^placed farther above the curve corresponding to equation (5). 
A multiple regression analysis was therefore performed to deter-
'""'« the coefficient in equation (7), the Reynolds-number ex-
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ponent, and 0. Using all of the data in Fig. 2 resulted in 

Nu = 0.0207 Pr0-33 Re0-8 [-j^-) (8) 

I t is noted that the value b = 0.17 is somewhat larger than the 
value of 0.1 recommended by Kays [3] but agrees with the ana
lytic results of Deissler and Eian [5] which correspond to a value 
of 6 = 0.19 for cooling [3]. 

Isothermal and diabatic friction factors were obtained and they 
compared well with the Karman-Nikuradse data for smooth 
tubes. No significant temperature-ratio effect could be found 
during cooling. This is in agreement with the recommendation 
of Kays [3]. 
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Film-Cooling Effectiveness in the Presence of a 
Backward-facing Step 

L. MATTHEWS and J. H. WHITELAW1 

Introduction 

T H E influence of slot geometry on the effectiveness of film cool
ing has been shown to be of considerable importance both for two-
and three-dimensional slot configurations and stems from the 
different flow conditions which a particular slot creates in the 
plane of its exit. The present paper is concerned with two-
dimensional slots and extends the work of [1-3]2 to include 
measurements of the influence of a backward-facing step, located 
as shown in Fig. 1, on the downstream impervious-wall effective
ness.3 Since the velocity ratio, density ratio, and lip-thickness-
to-slot-height ratio are known to have significant influence, and 
also to be of practical importance, they are regarded as param
eters. 

The range of parameters investigated is particularly relevant 
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3 Defined as 7; = (mw — mo) /(mc — mo) where m is mass concen
tration of the injected gas and IF, C, and 6? refer respectively to the 
impervious wall, the slot, and the free stream. 

Contributed by the Heat Transfer Division of T H E AMERICAN 
SOCIETY OP MECHANICAL ENGINEERS. Manuscript received by the 
Heat Transfer Division April 26, 1972. 

F E B R U A R Y 1 9 7 3 / 135 Copyright © 1973 by ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



xrs:. 

~r 
/ 

—gBBi" \j 

-y /' / / /—7 

T-U — 

>~—-^ 

US U— 
x/y = '24 

1 . 1 

Fig. 1 Flow configuration 

to the cooling of gas-turbine combustion-chamber walls. In 
practice, cooling rings result in three-dimensional flows, but, with 
improving design, tend toward configurations which result, at 
very short distances from the slot exit, in two-dimensional flows. 
Thus, the two-dimensional limitation of the present work implies 
that the results conform to the optimum effectiveness for pre
scribed values of the parameters specified above. 

Equipment 

The experiments were carried out in the wind tunnel pre
viously described in [4] with a free-stream velocity of 60 fps and 
a slot height of 1/i in. The two-dimensionality of the flow had 
previously been checked, but, because separation regions are par
ticularly sensitive to three-dimensional effects, the two-dimen
sionality of the reattachment line was confirmed visually for the 
largest step height of 1/i in. A mixture of mineral oil and ti
tanium dioxide was used for the surface-flow visualization and re
sulted in reattachment lines which were parallel to the slot exit 
to within 5 percent of the distance from the slot exit over the 
central 15-in. section of the tunnel. 

The experimental techniques were modified from those de
scribed in [1-4]. The mass concentration of either a tracer gas 
(helium) in air or Arcton 12 in air was measured after drawing 
samples through static-pressure holes in the base plate of the 
wind tunnel. The need for rapid, on-line concentration measure
ments precluded the use of the chromatographic technique used 
earlier. 

Since only two-component mixtures were employed, the chro-
matograph was replaced by a sensitive katharometer (Servomex 
MK 158) which combined sensitivity with stability, low internal 
volume, and the ability to sustain high flow rates. The katha
rometer consisted of two chambers, each of 1.6 X 10~4 in.3 in-

Fig. 3 Effect of step height on film-cooling effectiveness: Pc/pc 3, 
i/yc = 1/8; PCI'C/PGUO = for # , 2.0; for A, 1.0; for B 0.7 

ternal volume and containing a matched pair of platinuin 'ii,[-
ments. The two sets of filaments formed a Wheatstone ninlg,. 
and were supplied with constant voltage by an external uni .',i-|i 
zeroing and signal-attenuation controls. The balance vwi.*-
which resulted from one set of filaments being exposed to a !;:• • °.f 
composition different from the reference gas, was scanneu IVI 
tinuously by a data logger and recorded on punched tape. '!':.• 
flow rate of both streams was regulated by matched.needle VIU'I 
and measured on matched rotameters and the katharometrr •n..i 
preheating coils were located in a thermostatically con.i"'!f'l 
oven; these precautions insured that the balance voltage «•.-.• 
function of concentration alone. 

The katharometer was calibrated for mixtures of Arctoii 111 if 
air and for helium in air by injecting samples of known CIKCI: 
tration. The Arcton-12 calibration was nonlinear and tl..'i !"•' 
helium was linear for volume concentrations of less than I ii"' 
cent. Air was used as the reference gas in these calibration->. 

To measure values of wall concentration, samples wen1 in
duced from the static-pressure holes through equal lengths ••!' I" 
podermic tubing to a fluidics-type selector valve which pernir.' 
any one of 10 sample lines to be switched to the katharon.i'1"! 
The flow was induced by a vacuum pump, and a choked • lili' • 

Fig. 2 Effect of step height on film-cooling effectiveness: PC/PG — I ; PCUC/PGUQ = for 
O, 2.0; for A , 1.0; for D, 0.7 
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tween t h e p u m p a n d t h e k a t h a r o m e t e r i n s u r e d t h a t t h e flow w a s 

j „ t T h i s a r r a n g e m e n t p e r m i t t e d m e a s u r e m e n t s of m a s s 

noent ra t ion t o a p rec i s ion of ± 1 p e r c e n t a n d w i t h a r e sponse 

° i m e of less t h a n 2 sec . 

Results a n d D i s c u s s i o n 

The m e a s u r e d v a l u e s of imperv ious -wa l l effectiveness a r e 

hown in F igs . 2 a n d 3 . F i g u r e 2 ind i ca t e s t h e influence of t h e 

I pkward-facing s t e p for t h r e e ve loc i ty r a t ios , for t h r e e d o w n -

t am d is tances , a n d for t w o v a l u e s of t h e l ip - th ickness - to - s lo t -

1 pisht ra t io . T h e m e a s u r e m e n t s s h o w n in F i g . 2 were o b t a i n e d 

• n „ a t r a c e r of h e l i u m gas in t h e s lo t flow, a n d t h e y conform, 

therefore, t o u n i f o r m d e n s i t y . I t is clear t h a t in t h e case of t h e 

thin lip t h e dec rease in effect iveness w i t h s t e p h e i g h t is g r e a t e s t 

for the lower ve loc i ty r a t i o s ; t h e m a x i m u m decrease in effective

ness cor responds t o a p p r o x i m a t e l y 15 p e r c e n t of u n i t y for a s t e p -

height- to-slot-height r a t i o of 2. F o r t h e case of t h e t h i c k l ip , 

the highest ve loc i ty r a t i o r e su l t ed in t h e g r e a t e s t dec rease in 

effectiveness close t o t h e s lo t ex i t ; t h i s t r e n d is reversed w i t h 

downstream d i s t a n c e a n d a t x/yc of 56 ; t h e l a rges t dec rease in 

effectiveness was r e c o r d e d w i t h t h e lower ve loc i ty r a t io s . 

Figure 3 p r e s e n t s m e a s u r e m e n t s co r r e spond ing t o t h e t h i n l ip 

and for a d e n s i t y r a t i o of 2. T h e s e resu l t s were o b t a i n e d b y in 

jecting a m i x t u r e of A r c t o n 12 a n d a i r t h r o u g h t h e s lot ex i t a n d 

they re la te p a r t i c u l a r l y t o g a s - t u r b i n e c o m b u s t o r p r a c t i c e 

where s imilar d e n s i t y r a t i o s a r e e n c o u n t e r e d . I t is c lear t h a t t h e 

influence of t h e s t e p h e i g h t is cons ide rab le ; for e x a m p l e , a d e 

crease in effectiveness of 50 p e r c e n t w a s r eco rded a t x/yc of 16 

for t h e lowest b lowing r a t e a n d for a s t ep -he igh t - to - s lo t -he igh t 

r a t i o of 2. T h e m e a s u r e m e n t s w i t h a d e n s i t y r a t i o of 2 were n o t 

r e p o r t e d w i t h t h e th ick- l ip g e o m e t r y because i t w a s a n t i c i p a t e d 

t h a t t h e influence of t h e s t e p h e i g h t w o u l d b e less in t h i s case . 

T h e m e a s u r e m e n t s of F igs . 2 a n d 3 m a y be r e p l o t t e d a g a i n s t 

d o w n s t r e a m d i s t ance , a n d for t h e case of t h e t h i n lip a n d u n i f o r m 

d e n s i t y t h e y i n d i c a t e t h a t t h e s e p a r a t i o n region i m m e d i a t e l y 

d o w n s t r e a m of t h e s t e p causes a m a x i m u m in t h e effect iveness 

c u r v e a t t h e r e a t t a c h m e n t l ine. U p s t r e a m of t h e r e a t t a c h m e n t 

l ine t h e effectiveness d r o p s t o a m i n i m u m . I n c o n t r a s t , t h e 

m e a s u r e m e n t s o b t a i n e d a t a d e n s i t y r a t i o of 2 dec rease m o n o -

ton ica l ly . 
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Heat Transfer through a Rankine Vortex 

M. GHIL1 and A. SOLAN2 

T H E objec t of t h i s n o t e is t o p r e s e n t a c losed-form so lu t ion for 

the heat t r ans f e r t h r o u g h a R a n k i n e v o r t e x . I t t u r n s o u t t h a t 

for certain cond i t ions , satisfied in m a n y a c t u a l flow s i t u a t i o n s , 

this solution g ives a s q u a r e - r o o t d e p e n d e n c e of t h e N u s s e l t n u m 

ber on t h e Pec l e t n u m b e r , i r r e s p e c t i v e of t h e de ta i l s of t h e t e m 

perature b o u n d a r y cond i t ions . T h i s r e su l t p l a y s a ro le in t h e 

heat t ransfer f rom t h e r e a r of bluff bod ie s . 

Consider a R a n k i n e v o r t e x , composed of a core of r a d i u s i\ r o 

tating in so l id -body r o t a t i o n w i t h t a n g e n t i a l ve loc i ty cor a n d a 

potential-vortex o u t e r flow w i t h t a n g e n t i a l ve loc i ty r / ( 2 7 r r ) . 

Assume t h a t a t a r a d i u s r2 t h e t e m p e r a t u r e is p r e s c r i b e d , a n d i t 

is required t o ca l cu l a t e t h e h e a t t r ans fe r t h r o u g h t h e r o t a t i n g 

vortex a n d t o c o m p a r e i t w i t h t h e h e a t t r a n s f e r t h r o u g h a s t a 

tionary fluid u n d e r t h e s a m e b o u n d a r y cond i t ions . ( T h e p r o b 

lem thus defined is a n ex tens ion of t h e bas i c idea of Co le [ l ] , 3 

who considered on ly t h e t w o l im i t i ng cases of ri = 0 a n d )'i = ? v ) 

The typica l s i t u a t i o n w e sha l l h a v e t o dea l w i t h is t h a t in w h i c h 

the heat e n t e r s t h r o u g h o n e half of t h e c i rcumference a n d exi t s 

through t h e o t h e r half. I n t h i s s i t u a t i o n w e m a y t h i n k of t h e 

vortex as l o c a t e d b e t w e e n t w o reg ions of t h e flow field far a w a y 

from each o t h e r , t h e o n e h o t a n d t h e o t h e r cold. D u e t o t h e 

linearity of t h e p r o b l e m i t is poss ib le t o s t u d y each F o u r i e r 

component of t h e t e m p e r a t u r e b o u n d a r y cond i t i on s e p a r a t e l y , 

™ , as will b e seen, a n i n t e r e s t i n g g e n e r a l r e s u l t c an b e o b t a i n e d 

even w i t h o u t specifying t h e de t a i l s of t h e b o u n d a r y cond i t ion . 
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0 < r < n 
5 T 

uYe=a 
cV2 r br ?-2 5 0 V 

2ir r2 d0 ~ \ d r 2 r d r r 2 d-02 / 
n < r < r; 

w i t h t h e b o u n d a r y cond i t ions 

a t r = r2 T = / ( 0 ) = £ C„ cos n 6 + Y, D» s i 

0) 

(2) 

sin n o 
n = l (3) 

at r = n T{n - 0) = T{n + 0) 

d r n - 0 £>r i + 0 

a t r = 0 \T\ < 

(4) 

(5) 

Af ter s e p a r a t i o n of v a r i a b l e s , for e q u a t i o n (1) we o b t a i n b y 

s t a n d a r d m a n i p u l a t i o n s t h e so lu t ion 

0 < r < n T(r, 6) = J2 emra{(i*om/ocf/>rWne 

7 1 = 1 

+ E (-i)'y.K»/«)' 
n = l 

/ v i « - « ' 9 (6) 

w h e r e Jn a re Bessel func t ions of t h e first k i n d . S imi lar ly , for 

e q u a t i o n (2) w e g e t 

n < r < r2 T(r, 6) = JT (anr» + b„r~")einS 

« = i 

+ E ( c r * + cLr-^e-™0 (7) 
n = l 

w h e r e 

( i X \ 
^ - a r c t a n - J fj, = Vn2 + i\n = n'-- (n2 + X 2 ) V l exp ( — a r c t a n — ) (8) 

p, is t h e complex c o n j u g a t e of p, X = r / ( 2 7 r a ) , a n d a r c t a n (\/n) is 
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tween t h e p u m p a n d t h e k a t h a r o m e t e r i n s u r e d t h a t t h e flow w a s 

j „ t T h i s a r r a n g e m e n t p e r m i t t e d m e a s u r e m e n t s of m a s s 

noent ra t ion t o a p rec i s ion of ± 1 p e r c e n t a n d w i t h a r e sponse 

° i m e of less t h a n 2 sec . 

Results a n d D i s c u s s i o n 

The m e a s u r e d v a l u e s of imperv ious -wa l l effectiveness a r e 

hown in F igs . 2 a n d 3 . F i g u r e 2 ind i ca t e s t h e influence of t h e 

I pkward-facing s t e p for t h r e e ve loc i ty r a t ios , for t h r e e d o w n -

t am d is tances , a n d for t w o v a l u e s of t h e l ip - th ickness - to - s lo t -

1 pisht ra t io . T h e m e a s u r e m e n t s s h o w n in F i g . 2 were o b t a i n e d 

• n „ a t r a c e r of h e l i u m gas in t h e s lo t flow, a n d t h e y conform, 

therefore, t o u n i f o r m d e n s i t y . I t is clear t h a t in t h e case of t h e 

thin lip t h e dec rease in effect iveness w i t h s t e p h e i g h t is g r e a t e s t 

for the lower ve loc i ty r a t i o s ; t h e m a x i m u m decrease in effective

ness cor responds t o a p p r o x i m a t e l y 15 p e r c e n t of u n i t y for a s t e p -

height- to-slot-height r a t i o of 2. F o r t h e case of t h e t h i c k l ip , 

the highest ve loc i ty r a t i o r e su l t ed in t h e g r e a t e s t dec rease in 

effectiveness close t o t h e s lo t ex i t ; t h i s t r e n d is reversed w i t h 

downstream d i s t a n c e a n d a t x/yc of 56 ; t h e l a rges t dec rease in 

effectiveness was r e c o r d e d w i t h t h e lower ve loc i ty r a t io s . 

Figure 3 p r e s e n t s m e a s u r e m e n t s co r r e spond ing t o t h e t h i n l ip 

and for a d e n s i t y r a t i o of 2. T h e s e resu l t s were o b t a i n e d b y in 

jecting a m i x t u r e of A r c t o n 12 a n d a i r t h r o u g h t h e s lot ex i t a n d 

they re la te p a r t i c u l a r l y t o g a s - t u r b i n e c o m b u s t o r p r a c t i c e 

where s imilar d e n s i t y r a t i o s a r e e n c o u n t e r e d . I t is c lear t h a t t h e 

influence of t h e s t e p h e i g h t is cons ide rab le ; for e x a m p l e , a d e 

crease in effectiveness of 50 p e r c e n t w a s r eco rded a t x/yc of 16 

for t h e lowest b lowing r a t e a n d for a s t ep -he igh t - to - s lo t -he igh t 

r a t i o of 2. T h e m e a s u r e m e n t s w i t h a d e n s i t y r a t i o of 2 were n o t 

r e p o r t e d w i t h t h e th ick- l ip g e o m e t r y because i t w a s a n t i c i p a t e d 

t h a t t h e influence of t h e s t e p h e i g h t w o u l d b e less in t h i s case . 

T h e m e a s u r e m e n t s of F igs . 2 a n d 3 m a y be r e p l o t t e d a g a i n s t 

d o w n s t r e a m d i s t ance , a n d for t h e case of t h e t h i n lip a n d u n i f o r m 

d e n s i t y t h e y i n d i c a t e t h a t t h e s e p a r a t i o n region i m m e d i a t e l y 

d o w n s t r e a m of t h e s t e p causes a m a x i m u m in t h e effect iveness 

c u r v e a t t h e r e a t t a c h m e n t l ine. U p s t r e a m of t h e r e a t t a c h m e n t 

l ine t h e effectiveness d r o p s t o a m i n i m u m . I n c o n t r a s t , t h e 

m e a s u r e m e n t s o b t a i n e d a t a d e n s i t y r a t i o of 2 dec rease m o n o -

ton ica l ly . 
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Heat Transfer through a Rankine Vortex 

M. GHIL1 and A. SOLAN2 

T H E objec t of t h i s n o t e is t o p r e s e n t a c losed-form so lu t ion for 

the heat t r ans f e r t h r o u g h a R a n k i n e v o r t e x . I t t u r n s o u t t h a t 

for certain cond i t ions , satisfied in m a n y a c t u a l flow s i t u a t i o n s , 

this solution g ives a s q u a r e - r o o t d e p e n d e n c e of t h e N u s s e l t n u m 

ber on t h e Pec l e t n u m b e r , i r r e s p e c t i v e of t h e de ta i l s of t h e t e m 

perature b o u n d a r y cond i t ions . T h i s r e su l t p l a y s a ro le in t h e 

heat t ransfer f rom t h e r e a r of bluff bod ie s . 

Consider a R a n k i n e v o r t e x , composed of a core of r a d i u s i\ r o 

tating in so l id -body r o t a t i o n w i t h t a n g e n t i a l ve loc i ty cor a n d a 

potential-vortex o u t e r flow w i t h t a n g e n t i a l ve loc i ty r / ( 2 7 r r ) . 

Assume t h a t a t a r a d i u s r2 t h e t e m p e r a t u r e is p r e s c r i b e d , a n d i t 

is required t o ca l cu l a t e t h e h e a t t r ans fe r t h r o u g h t h e r o t a t i n g 

vortex a n d t o c o m p a r e i t w i t h t h e h e a t t r a n s f e r t h r o u g h a s t a 

tionary fluid u n d e r t h e s a m e b o u n d a r y cond i t ions . ( T h e p r o b 

lem thus defined is a n ex tens ion of t h e bas i c idea of Co le [ l ] , 3 

who considered on ly t h e t w o l im i t i ng cases of ri = 0 a n d )'i = ? v ) 

The typica l s i t u a t i o n w e sha l l h a v e t o dea l w i t h is t h a t in w h i c h 

the heat e n t e r s t h r o u g h o n e half of t h e c i rcumference a n d exi t s 

through t h e o t h e r half. I n t h i s s i t u a t i o n w e m a y t h i n k of t h e 

vortex as l o c a t e d b e t w e e n t w o reg ions of t h e flow field far a w a y 

from each o t h e r , t h e o n e h o t a n d t h e o t h e r cold. D u e t o t h e 

linearity of t h e p r o b l e m i t is poss ib le t o s t u d y each F o u r i e r 

component of t h e t e m p e r a t u r e b o u n d a r y cond i t i on s e p a r a t e l y , 

™ , as will b e seen, a n i n t e r e s t i n g g e n e r a l r e s u l t c an b e o b t a i n e d 

even w i t h o u t specifying t h e de t a i l s of t h e b o u n d a r y cond i t ion . 
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0 < r < n 
5 T 

uYe=a 
cV2 r br ?-2 5 0 V 

2ir r2 d0 ~ \ d r 2 r d r r 2 d-02 / 
n < r < r; 

w i t h t h e b o u n d a r y cond i t ions 

a t r = r2 T = / ( 0 ) = £ C„ cos n 6 + Y, D» s i 

0) 

(2) 

sin n o 
n = l (3) 

at r = n T{n - 0) = T{n + 0) 

d r n - 0 £>r i + 0 

a t r = 0 \T\ < 

(4) 

(5) 

Af ter s e p a r a t i o n of v a r i a b l e s , for e q u a t i o n (1) we o b t a i n b y 

s t a n d a r d m a n i p u l a t i o n s t h e so lu t ion 

0 < r < n T(r, 6) = J2 emra{(i*om/ocf/>rWne 

7 1 = 1 

+ E (-i)'y.K»/«)' 
n = l 

/ v i « - « ' 9 (6) 

w h e r e Jn a re Bessel func t ions of t h e first k i n d . S imi lar ly , for 

e q u a t i o n (2) w e g e t 

n < r < r2 T(r, 6) = JT (anr» + b„r~")einS 

« = i 

+ E ( c r * + cLr-^e-™0 (7) 
n = l 

w h e r e 

( i X \ 
^ - a r c t a n - J fj, = Vn2 + i\n = n'-- (n2 + X 2 ) V l exp ( — a r c t a n — ) (8) 

p, is t h e complex c o n j u g a t e of p, X = r / ( 2 7 r a ) , a n d a r c t a n (\/n) is 

FEBRUARY 1 9 7 3 / 137 Copyright © 1973 by ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the principal value of t a n - 1 ( X / K ) . Note that X is a Peclet num
ber, based on an arbitrary radius r and its corresponding velocity 
r / (2 i r r ) in the potential vortex, Pe = vr/a = T/2ira = X. 
As it turns out to be more convenient to work with complex 
quantities, to the physical real part of T(ri, 6) in (3) an imaginary 
part is now added, which, thanks to the linearity of equations 
(1) and (2) in the temperature T, may be discarded in due time. 
The n th Fourier component of the complex boundary condition 
is then 

Tn{n, B) = Ane
in0 + iBne~ 1,2, (9) 

The constants in the solutions (6), (7) must then satisfy the 
following system of six linear equations for each n: 

awV + b„r2~" = An 

Cntj1 + clnT^-f1 = iBn 

cJn^xi) = o„n" + bnrr» 

(-l)"f«Jn(i1/2xi) = cnrfi + d^rr* 

e„ — J„(i3/2xx) 
dr 

n = 1, 2, (10) 

(hfiri" bnnn' 

dr 

- dSn-*-1 

w h e r e 4 n , B„ are real; a,„ b„, c„, dn, e„, f„ are complex; xi = (can/ 
«)1 /Vi; and 

Jn(i
3/2x) = ber„x + ibeinx 

Jn(il^x) — ( — \)n(bernx — ibeinx) 

with ber„x, bei,,x Kelvin functions of order n. Writing the system 
(10) in block matrix form, we invert it in two steps by partitioning 
to yield 

Clu 

K 

C„ 

d„ 

e„ 

U 

here 

h = 

= iT* (l + 

= -n" (l -

« 1 
n I^-Aa 

P 1 
= -1— -7— 

Jn(i"h x{) 

d r . ,, , 

T,r)h^ 
U)A«-
+ ~\ Aai-iBn 

- J-) /Aai-iBn 

An 

-j-iBn 

n = 1, 2, (12) 

h = ~r Jn(is/2Vun/ar)lr, = i'/'(un/a)1/'Ja'(i'
/lxi) 

dr 

A a = (r./nT (l + ^ ~) - {n/nY (l - ± £ • ) 
(13) 

A«! = (n/nf 

With (12) we may finally get down to our purpose of calculat
ing the heat transfer through the l iankine vortex. Obviously 
the heat transfer will be obtained by integration of the radial 
derivative of the temperature along the "circumference" r — r% 
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of the vortex between appropriate limits. For the 1 
situation in which the heat enters through half the circumf 
and exits through the other half, the heat flux is 

1-/2 5 y 

/2 br 
•r2d 

Due to the linearity of the problem already mentioned 
possible to study each Fourier component of the boundary 
tion (3) separately. The heat transfer corresponding 
nth cosine component 

T(n, 6) = C„ cos nd 

is then the real par t of 

2k ju(n)(a„)V 
n 

ft^sT") 

where 

s{n) = 

0 n = 2k 

1 n = 4fc + 1 

-1 n = 4fc -f 3 

(The heat flux corresponding to the sine components van 
By referring now the heat transfer (16) to the heat trans 
through the same volume of fluid at rest (X = 0) by cond 
alone, go = 2ks(n)CKI we define a (complex) Nusselt numl 

1 + r*z» + 
M 

(11) Nu„ = g/g0 
n 

Jn(i3/'Xl) 

ax 

(1 

1 - r*^ + M Jn(i'/!Xl) 

(«A)1/2 d 
(1 + r-

dx 
Jnii'^Xl) 

where r* = n / r 2 is dimensionless. (This includes as a i 
case Cole's solution [1] for a potential vortex, r* = 0 and \ 
g/go = \ / l + *X.) Though in general this appears t( 
rather complicated function of the Peclet number Pe = 
call tha t ix = s/n2 + i\n) and the core radius )•*, the intei 
result is tha t for r* < 0.5 and Peclet number Pe > 30n w 
|r*2f<| < 0.01, and, by taking the real part of (18), we obts 
very simple relation4 

Nu„ S Pe'A/(2a)1/= 

The overall Nusselt number 

Nu = 

J2 (.fi/n)-F(n,r*,J?e)-s(.n)-C„ 
» = i 

^ s{n)Cn 

where F(n, ?•*, Pe) denotes the second fraction on the rig! 
of (18), then reduces to 

Nu = cPe1/2 

where the constant c depends on the temperature boi 
condition. I t may be seen tha t irrespective of the details 
boundary condition and of the vortex core radius, the ?• 
number is proportional to the square root of the Peclet n 
(i.e., the circulation/diffusivity ratio). Thus, although 

4 As seen from equation (18), |r#2''| —>• 0 insures Nu» —»• M/71' 
ratio of the Bessel functions J„/ [(d/dx) (Jn) ] appearing in it 
bounded for all values of the parameters involved. This is 
so (although the functions themselves diverge for large values 
arguments), as can easily be seen by using asymptotic expansi 
the polar form of these functions (cf., e.g., Abramowitz and £ 
[2]). 
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,,i 110rnially be difficulties in ascertaining the temperature dis-
••hution (3) at some radius r2 by measurements or analysis, one 

v safely ignore its details and rely on the general square-root 
I nend e n c e o n -Pe> equation (20), leaving the numerical coeffi-
'pivfc which will have to express the averaging over all n's, to 

. determined experimentally in any given flow and heat-
niisfer configuration. • Such square-root dependence can be 
lolied, for instance, to correlate the heat transfer from the rear 

of bluff obstacles [3]. 
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Unsteady Heat Transfer and Temperature for 
Stokesian Flow about a Sphere1 

R. G. Watts.2 Dr. Konopliv and Professor Sparrow are to be 
complimented on their elegant treatment of a very timely prob
lem. Analytical solutions of the problem of transient heat 
transfer from a constant-temperature sphere to a fluid at a dif
ferent temperature have now been presented for three important 
limiting cases. Chao and Chen [2]3 published a solution for the 
special case of large Reynolds number and small Peclet number. 
The present paper (first par t) treats the case of small Reynolds 
number and large Peclet number. Choudhury and Drake [11] 
recently presented a solution for the case of Re <<C 1 a n d P e < 1. 
The corresponding steady-state solutions have been given re
spectively by Watts [12], Acrivos and Goddard [9], and Acrivos 
and Taylor [4]. Judging from the dates of publication, the 
paper by Choudhury and Drake seems to have appeared while 
the present paper was in press. I suspect the authors would like 
to comment on its significance in relation to their own work. 

I would like to discuss the relation between the results ob
tained by the authors and those presented by Choudhury and 
Drake, particularly as regards the range of validity of the 
authors' results and the approach to steady state. 

The authors state tha t "During the conduction regime (0 < 
T < 0.5), the Nusselt-number results are unaffected by the 
thermal boundary-layer assumptions" and that "there is no 
Peclet-number limitation for T < 0.5." This is not true. When 
the Peclet number is large the steady-state Nusselt number is 
given approximately by Nu* ~ 0.922 + 0.991 Pe1/3 as stated 
by the authors and given in [9]. However, when Pe < 1, Nu* c^ 
2 + Pe /2 [4]. I t is unlikely tha t the Nusselt number ever falls 
below 2, corresponding to pure conduction. Fig. 7 is a repro
duction of Fig. 3 with appropriate steady-state results for Pe < 1 
sketched in. Clearly the authors' solution cannot be valid when 
r < 0.5 for all Pe because for small Pe their solution curve falls 
well below the steady-state values, except for very small values 
of T. The limitation of Pe is shown more clearly in Fig. 8 where 
the authors' results for low Pe are compared to those of Choud
hury and Drake. The range of validity of the authors' results 
evidently depends strongly on the Peclet number. For example, 
Fig. 8 indicates tha t when Pe = 0.5, their results are already far 
too low when T = 0.05. 

The reason for this is most probably because when the Peclet 
number is small the thermal boundary layer thickens very 
rapidly, making the boundary-layer assumption invalid even for 

1 By N. Konopliv and E. M. Sparrow, published in the Aug. 1972 
issue of the JOURNAL OF HEAT TRANSFER, TRANS. ASME, Series C, 
Vol. 94, No. 3, pp. 266-272. 

2 Associate Professor, Department of Mechanical Engineering, 
Tulane University, New Orleans, La. Mem. ASME. 

3 Numbers in brackets designate References in the paper under 
discussion as well as Additional References at end of discussion. 
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X 

Fig. 7 Steady-state values for low Pe 

Fig. 8 Comparison of present results with those of Choudhury eri 
Drake [ I T ] for low Pe 

very small T. The extent of the thermal boundary layer •••m ' 
estimated from Fig. 4. If ST/r0 = 0.5 is taken to be an •'PI-" _ 
limit for the assumption of a thin thermal boundary layii- ''' 
if Pe = 0.5, then (ST/n) (3A Pe)1 / 3 = 0.361. Assumi:'-' l! 

outer edge of the thermal boundary layer to be located «':'•• 
(Tf* - T„) / (Ti - Ta) = 0.25, we find tha t « r / r 0 = ()."• <* 
T ca 0.05. The thermal-layer thickness is already quite lnW-

Authors' Closure 

The authors are grateful to Professor Watts for his int •"'"'• 
the article and for his kind remarks. 
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fdeftned to be 0 < T < 0.5), the Fourier number does not exceed 
A5/(3Pe/4)2/3. Consequently, the fractional deviation of Nu* 
f ] n n l that of transient conduction does not exceed 19/(180•23/'2) 

3,74 percent. We thus take issue with the challenge of Pro-
, s o r Watts tha t our statement tha t "there is no Peclet-number 
,. jtation for T < 0.5" is not true. I t is true, keeping in mind 
that o u r s t u ^ y applies to large values of the Peclet number and 

siich should not necessarily be applicable to low values of the 
peClet number. 

The solution of Choudhury and Drake [11], when expressed in 
a form similar to the foregoing, is 

Nu* = 
\ A r F o 2 + 

19 

160V' 
= Pe2Fo6/2 + 0(Fo 3 ) 

Tf we utilize the conduction-regime criterion for this case to be 
that of the previous, then the fractional deviations of Nu* from 
that of pure conduction are also small. Clearly then, the 
Nusselt numbers within this regime differ uniformly by two, and 
pjg. 8 of Professor Watts shows this to be the case. However, 
in view of the implicit dependence of the abscissa on Pe, this 
figure shows an explicit dependence on Pe, whereas for all prac
tical purposes Nu* depends only on Fo (r < 0.5): Nu* = 2 / \ A r F o 
4- 2 for Pe < 1 and Nu* = 2 / V i r F o for Pe » 1. 

In order to explain the aforementioned discrepancy, it is neces-
jgry to examine the nature of the physical processes involved 
and to explain the asymptotic solutions used in each of the limit
ing oases. 

The Pe < 1 case, being conduction-dominated, exhibits nearly 
spherical isotherms around a sphere for the entire duration of the 
lieftt transfer, whereas for the P e » l case this holds only during 
the initial stage, and with passage of time the isotherms are 
"carried away" from the sphere into the fluid in the direction of 
the fluid flow, exhibiting the maximum extent at steady state at 
the rear stagnation point. 

The solution of Choudhury and Drake is derived in essence via 
the perturbation around the spherical isotherms and is applicable 
to all spherical coordinates, but our solution is not—it excludes 
the region in the proximity of the rear stagnation point where the 
thermal boundary layer as such may not exist. In fact, a t <j> = T, 
0* = 0 is the only admissible solution and consequently the local 
Nusselt number at that location is zero. A more detailed con
sideration (of steady-state heat transfer) by Shi and Newman [13] 
shows tha t the local Nusselt number there is not zero, but is 1.192. 
The contribution to the total surface heat transfer from this region 
is small, so that the boundary-layer assumption is justified over 
the entire surface of the sphere. 

The authors were aware of the discrepancy of two due to 
steady-state conduction, a discrepancy which apparently led to 
the other comment of the discusser: tha t our statement is not 
true tha t "during the conduction regime (0 < T < 0.5), the 
Nusselt-number results are unaffected by the thermal boundary-
layer assumptions." The comment is well taken but here also 
the statement applies only to the Pe 3> 1 case, so that the "pure 
conduction solution" is 6* = e r f c ( f / 2 \ / r ) and Nu* is indeed 
2 / V i r F o . 

Once again, the authors wish to express sincere thanks to Pro
fessor Watts for a rather detailed review of the first par t of our 
paper. 
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Correlations for Thermal Contact 
Conductance In Vacuo1 

Paul W. O'Callaghan2 and S. Douglas Prober*.3 Since the compila
tion of data presented by Thomas and Probert, over 800 experi
mental values have been obtained for the thermal resistance of 
various contacts. Seven different specimen pairs (see Table 1), 
involving invar, aluminum, P T F E , aluminum oxide, quartz, and 
(old, were examined in high vacua [38] .4 The results are shown 
superimposed upon the previous data in Figs. 1 and 2. Each 
Point on the figures is the arithmetic average of at least four inde
pendent determinations of resistance taken under constant ap
plied loading. The exponents from each regression analysis are 
"•63 and 0.66 respectively. All the data shown in Fig. 2 were 
"«bsequently replotted using the effective elastic modulus of the 

' «itact instead of the hardness M in the dimensionless loading 
'sctor. This modification, however, increased the scatter in the 
*ta, and so it was concluded that the hardness rather than the 
*t ic modulus is the more significant parameter with respect to 
'"'relation of thermal-contact-resistance data. Further details 
f*icerning experimental technique may be found in [38, 39]. 
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Appendix 

For the purposes of the present compilation, ft, a, \p, p, E*, and 
X were calculated respectively from 
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Fig. 2 Variation of dimensionless conductance with dimensionless load 
for contacts in vacuo 

Harmonic mean thermal conduc
tivity, ft (Wm-iK- 1 ) 

Effective rms roughness, <rt 
(10-6 m ) 

Effective mean absolute surface 
slope, i/ (mm - 1) 

Harmonic mean peak radius of 
curvature, p (10~6 m) 

Effective mean elastic modulus, E* 
(108 Nm" 2 ) 

Plasticity index, X 
Nominal contact area (mm2) 
Number of observations 
Number used for correlations 
Symbols on Figs. 1 and 2 
Hardness of the softer contacting 

material, M (108Nm-2) 

invar 
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* Where values of <p or p of either of the contacting materials could not be assessed, estimates were made, 
f All surfaces weie nominally flat, i.e., the waviness undulations were of the order of the roughness. 

Nongray Radiative Transport 
in a Cylindrical Medium1 

Z. Chiba2 and R. Greif.2 In a study of the radiative transport in 
a cylindrical medium, Habib and Greif noted that their gray gas 
results differed from those obtained by Kesten [1] .3 The reason 
for this difference has been pointed out to us by Guy [2]. Equa
tion (24) of Kesten is the correct result for the radiative flux, 
but in going to equation (27) an error appears to have been 
made. However, the numerical results of Kesten were appar
ently based on the correct equation (24), while Habib and Greif 
utilized the incorrect equation (27). Thus the numerical results 

presented by Kesten are correct and those by Habib and 
are incorrect. 

The question of the validity of the approximation 

-*/" dp. 
Di(x) f 

Jo 

jxe 

(1 - M2)V2 
- 5 l / 4 

i By I. S. Habib and R. Greif, published in the February, 1970, 
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Vol. 92, No. 1, pp. 28-32. 

2 Department of Mechanical Engineering, University of Cali
fornia, Berkeley, Calif. 

3 Numbers in brackets designate Additional References at end of 
discussion. 

was therefore reexamined. Results obtained using equal/••" '' 
were nemo found to be in very good agreement with the %)•<:• -
calculations of Kesten (Chiba [3]). Expressions for the sc ,- i l-
radiative flux using equation (1) have also been obtained ai-i : i" 
available in [3]. 
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